Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138964863> ?p ?o ?g. }
- W3138964863 endingPage "1619" @default.
- W3138964863 startingPage "1612" @default.
- W3138964863 abstract "DNA N4-methylcytosine (4mC), an epigenetic modification found in prokaryotic and eukaryotic species, is involved in numerous biological functions, including host defense, transcription regulation, gene expression, and DNA replication. To identify 4mC sites, previous computational studies mostly focused on finding hand-crafted features. This area of research, therefore, would benefit from the development of a computational approach that relies on automatic feature selection to identify relevant sites. We here report 4mC-w2vec, a computational method that learned automatic feature discrimination in the Rosaceae genomes, especially in Rosa chinensis (R. chinensis) and Fragaria vesca (F. vesca), based on distributed feature representation and through the word embedding technique ‘word2vec’. While a few bioinformatics tools are currently employed to identify 4mC sites in these genomes, their prediction performance is inadequate. Our system processed 4mC and non-4mC sites through a word embedding process, including sub-word information of its biological words through k-mer, which then served as features that were fed into a double layer of convolutional neural network (CNN) to classify whether the sample sequences contained 4mCs or non-4mCs sites. Our tool demonstrated performance superior to current tools that use the same genomic datasets. Additionally, 4mC-w2vec is effective for balanced and imbalanced class datasets alike, and the online web-server is currently available at: http://nsclbio.jbnu.ac.kr/tools/4mC-w2vec/." @default.
- W3138964863 created "2021-03-29" @default.
- W3138964863 creator A5008953921 @default.
- W3138964863 creator A5017426085 @default.
- W3138964863 creator A5031342322 @default.
- W3138964863 creator A5066277166 @default.
- W3138964863 date "2021-01-01" @default.
- W3138964863 modified "2023-10-11" @default.
- W3138964863 title "Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation" @default.
- W3138964863 cites W1501531009 @default.
- W3138964863 cites W1541931954 @default.
- W3138964863 cites W1553103276 @default.
- W3138964863 cites W1966716734 @default.
- W3138964863 cites W1975482179 @default.
- W3138964863 cites W1984783889 @default.
- W3138964863 cites W1987529453 @default.
- W3138964863 cites W2004078197 @default.
- W3138964863 cites W2005820729 @default.
- W3138964863 cites W2006419303 @default.
- W3138964863 cites W2014571977 @default.
- W3138964863 cites W2038636394 @default.
- W3138964863 cites W2074746593 @default.
- W3138964863 cites W2074866786 @default.
- W3138964863 cites W2114970231 @default.
- W3138964863 cites W2123032740 @default.
- W3138964863 cites W2129329277 @default.
- W3138964863 cites W2130931930 @default.
- W3138964863 cites W2132083787 @default.
- W3138964863 cites W2140852958 @default.
- W3138964863 cites W2141818629 @default.
- W3138964863 cites W2152656267 @default.
- W3138964863 cites W2155653793 @default.
- W3138964863 cites W2156738105 @default.
- W3138964863 cites W2160530309 @default.
- W3138964863 cites W2160815625 @default.
- W3138964863 cites W2170747616 @default.
- W3138964863 cites W2537227711 @default.
- W3138964863 cites W2588789839 @default.
- W3138964863 cites W2734608416 @default.
- W3138964863 cites W2737592062 @default.
- W3138964863 cites W2771079624 @default.
- W3138964863 cites W2786142325 @default.
- W3138964863 cites W2882319491 @default.
- W3138964863 cites W2883534252 @default.
- W3138964863 cites W2891420113 @default.
- W3138964863 cites W2896699990 @default.
- W3138964863 cites W2897898606 @default.
- W3138964863 cites W2901218091 @default.
- W3138964863 cites W2915815599 @default.
- W3138964863 cites W2936503027 @default.
- W3138964863 cites W2942801317 @default.
- W3138964863 cites W2946682182 @default.
- W3138964863 cites W2951765074 @default.
- W3138964863 cites W2951845617 @default.
- W3138964863 cites W2952631022 @default.
- W3138964863 cites W2964874436 @default.
- W3138964863 cites W2969662046 @default.
- W3138964863 cites W2976262693 @default.
- W3138964863 cites W2981572887 @default.
- W3138964863 cites W2993513714 @default.
- W3138964863 cites W3007033512 @default.
- W3138964863 cites W3010162374 @default.
- W3138964863 cites W3013230828 @default.
- W3138964863 cites W3017583060 @default.
- W3138964863 cites W3036278095 @default.
- W3138964863 cites W3043927860 @default.
- W3138964863 cites W3089668159 @default.
- W3138964863 cites W3120889166 @default.
- W3138964863 doi "https://doi.org/10.1016/j.csbj.2021.03.015" @default.
- W3138964863 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8042287" @default.
- W3138964863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33868598" @default.
- W3138964863 hasPublicationYear "2021" @default.
- W3138964863 type Work @default.
- W3138964863 sameAs 3138964863 @default.
- W3138964863 citedByCount "17" @default.
- W3138964863 countsByYear W31389648632021 @default.
- W3138964863 countsByYear W31389648632022 @default.
- W3138964863 countsByYear W31389648632023 @default.
- W3138964863 crossrefType "journal-article" @default.
- W3138964863 hasAuthorship W3138964863A5008953921 @default.
- W3138964863 hasAuthorship W3138964863A5017426085 @default.
- W3138964863 hasAuthorship W3138964863A5031342322 @default.
- W3138964863 hasAuthorship W3138964863A5066277166 @default.
- W3138964863 hasBestOaLocation W31389648631 @default.
- W3138964863 hasConcept C104317684 @default.
- W3138964863 hasConcept C138885662 @default.
- W3138964863 hasConcept C141231307 @default.
- W3138964863 hasConcept C154945302 @default.
- W3138964863 hasConcept C2279292 @default.
- W3138964863 hasConcept C2776401178 @default.
- W3138964863 hasConcept C2776461190 @default.
- W3138964863 hasConcept C41008148 @default.
- W3138964863 hasConcept C41608201 @default.
- W3138964863 hasConcept C41895202 @default.
- W3138964863 hasConcept C54355233 @default.
- W3138964863 hasConcept C70721500 @default.
- W3138964863 hasConcept C81363708 @default.
- W3138964863 hasConcept C86803240 @default.