Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138985364> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3138985364 abstract "Abstract In the past few years, over hundreds of wells were drilled in Gulf of Thailand, had faced with the depletion and lost circulation issues resulted from a lack of pressure data. A prior research of reservoir depletion pressure (Fangming, 2009) in oil field, China was obtained from multivariate statistic and regression by using density and neutron porosity log curves in logging-while-drilling data. However, the relative errors are 7.5% from the actual formation pressure. Thus, there are several latent variables in the model like drilling parameters (Rehm, 1971) which part of formation pressure. From 2018 initiative model in Satun-Funan, the classification model was obtained by using mud gas, porosity, water saturation, net sand thickness, net-hydrocarbon-pore thickness and neutron-density separation. However, the limitation is drilling parameters could not account by classifier, and accurate only original pressure category. So, this study has expanded scope to include other reservoir properties and drilling parameters then applied with machine learning on offset well dataset by using three regressors such quantile, ridge and XGBoost regressors. The pore pressure estimation model aims to improve efficiency for making decision in execution phase, increasing confidence in perforation strategy. The model parameters, pay thickness, porosity, water saturation, original pressure from local pressure profile and total gas show are accounted into this model. As of regressor assumption, some facts are conducted to logarithm and perform 2nd polynomial feature for model flexibility. There are three steps for building model such as data manipulation, analysis and deployment. Two purposes of pressure prediction impact algorithm selection, for operational phase, quantile regressor is implemented to provide conservative prediction while Ridge or XGBoost regressors are alternatives for perforation strategy, provide mid case result of pressure prediction. Overall model performance was measured using root mean square error (RMSE) on train & test dataset which show approximately 1.2 and 1.5 ppg range of accuracy respectively from total 12 drilling projects in Pattani basin. Overall model fitting is within reasonable range of generalization capacity to apply with unknown data point (test set). The future model will continue to improve accuracy and manage imbalanced dataset between original pressure and depleted sands." @default.
- W3138985364 created "2021-03-29" @default.
- W3138985364 creator A5000473135 @default.
- W3138985364 creator A5006158250 @default.
- W3138985364 creator A5021061729 @default.
- W3138985364 creator A5023941478 @default.
- W3138985364 creator A5027653439 @default.
- W3138985364 creator A5035537762 @default.
- W3138985364 creator A5039610722 @default.
- W3138985364 date "2021-03-16" @default.
- W3138985364 modified "2023-10-11" @default.
- W3138985364 title "Pore Pressure Estimation by Using Machine Learning Model" @default.
- W3138985364 cites W1978878626 @default.
- W3138985364 cites W2050377387 @default.
- W3138985364 cites W2055072688 @default.
- W3138985364 cites W2076077805 @default.
- W3138985364 cites W2079846727 @default.
- W3138985364 cites W2091266665 @default.
- W3138985364 cites W4241996101 @default.
- W3138985364 doi "https://doi.org/10.2523/iptc-21490-ms" @default.
- W3138985364 hasPublicationYear "2021" @default.
- W3138985364 type Work @default.
- W3138985364 sameAs 3138985364 @default.
- W3138985364 citedByCount "2" @default.
- W3138985364 countsByYear W31389853642021 @default.
- W3138985364 countsByYear W31389853642022 @default.
- W3138985364 crossrefType "proceedings-article" @default.
- W3138985364 hasAuthorship W3138985364A5000473135 @default.
- W3138985364 hasAuthorship W3138985364A5006158250 @default.
- W3138985364 hasAuthorship W3138985364A5021061729 @default.
- W3138985364 hasAuthorship W3138985364A5023941478 @default.
- W3138985364 hasAuthorship W3138985364A5027653439 @default.
- W3138985364 hasAuthorship W3138985364A5035537762 @default.
- W3138985364 hasAuthorship W3138985364A5039610722 @default.
- W3138985364 hasConcept C105795698 @default.
- W3138985364 hasConcept C119857082 @default.
- W3138985364 hasConcept C127313418 @default.
- W3138985364 hasConcept C127413603 @default.
- W3138985364 hasConcept C187320778 @default.
- W3138985364 hasConcept C25197100 @default.
- W3138985364 hasConcept C2776386368 @default.
- W3138985364 hasConcept C2781101838 @default.
- W3138985364 hasConcept C33923547 @default.
- W3138985364 hasConcept C41008148 @default.
- W3138985364 hasConcept C6648577 @default.
- W3138985364 hasConcept C78519656 @default.
- W3138985364 hasConcept C78762247 @default.
- W3138985364 hasConcept C84525736 @default.
- W3138985364 hasConcept C89128539 @default.
- W3138985364 hasConceptScore W3138985364C105795698 @default.
- W3138985364 hasConceptScore W3138985364C119857082 @default.
- W3138985364 hasConceptScore W3138985364C127313418 @default.
- W3138985364 hasConceptScore W3138985364C127413603 @default.
- W3138985364 hasConceptScore W3138985364C187320778 @default.
- W3138985364 hasConceptScore W3138985364C25197100 @default.
- W3138985364 hasConceptScore W3138985364C2776386368 @default.
- W3138985364 hasConceptScore W3138985364C2781101838 @default.
- W3138985364 hasConceptScore W3138985364C33923547 @default.
- W3138985364 hasConceptScore W3138985364C41008148 @default.
- W3138985364 hasConceptScore W3138985364C6648577 @default.
- W3138985364 hasConceptScore W3138985364C78519656 @default.
- W3138985364 hasConceptScore W3138985364C78762247 @default.
- W3138985364 hasConceptScore W3138985364C84525736 @default.
- W3138985364 hasConceptScore W3138985364C89128539 @default.
- W3138985364 hasLocation W31389853641 @default.
- W3138985364 hasOpenAccess W3138985364 @default.
- W3138985364 hasPrimaryLocation W31389853641 @default.
- W3138985364 hasRelatedWork W1532796807 @default.
- W3138985364 hasRelatedWork W1966896023 @default.
- W3138985364 hasRelatedWork W2028060116 @default.
- W3138985364 hasRelatedWork W2049826546 @default.
- W3138985364 hasRelatedWork W2089824128 @default.
- W3138985364 hasRelatedWork W2351020310 @default.
- W3138985364 hasRelatedWork W2384461035 @default.
- W3138985364 hasRelatedWork W2899959438 @default.
- W3138985364 hasRelatedWork W2907243789 @default.
- W3138985364 hasRelatedWork W2511401063 @default.
- W3138985364 isParatext "false" @default.
- W3138985364 isRetracted "false" @default.
- W3138985364 magId "3138985364" @default.
- W3138985364 workType "article" @default.