Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138990046> ?p ?o ?g. }
- W3138990046 endingPage "1500" @default.
- W3138990046 startingPage "1485" @default.
- W3138990046 abstract "Abstract. Terrestrial and airborne laser scanning and structure from motion techniques have emerged as viable methods to map snow depths. While these systems have advanced snow hydrology, these techniques have noted limitations in either horizontal or vertical resolution. Lidar on an unpiloted aerial vehicle (UAV) is another potential method to observe field- and slope-scale variations at the vertical resolutions needed to resolve local variations in snowpack depth and to quantify snow depth when snowpacks are shallow. This paper provides some of the earliest snow depth mapping results on the landscape scale that were measured using lidar on a UAV. The system, which uses modest-cost, commercially available components, was assessed in a mixed deciduous and coniferous forest and open field for a thin snowpack (< 20 cm). The lidar-classified point clouds had an average of 90 and 364 points/m2 ground returns in the forest and field, respectively. In the field, in situ and lidar mean snow depths, at 0.4 m horizontal resolution, had a mean absolute difference of 0.96 cm and a root mean square error of 1.22 cm. At 1 m horizontal resolution, the field snow depth confidence intervals were consistently less than 1 cm. The forest areas had reduced performance with a mean absolute difference of 9.6 cm, a root mean square error of 10.5 cm, and an average one-sided confidence interval of 3.5 cm. Although the mean lidar snow depths were only 10.3 cm in the field and 6.0 cm in the forest, a pairwise Steel–Dwass test showed that snow depths were significantly different between the coniferous forest, the deciduous forest, and the field land covers (p < 0.0001). Snow depths were shallower, and snow depth confidence intervals were higher in areas with steep slopes. Results of this study suggest that performance depends on both the point cloud density, which can be increased or decreased by modifying the flight plan over different vegetation types, and the grid cell variability that depends on site surface conditions." @default.
- W3138990046 created "2021-03-29" @default.
- W3138990046 creator A5038823493 @default.
- W3138990046 creator A5041124953 @default.
- W3138990046 creator A5043290423 @default.
- W3138990046 creator A5044298876 @default.
- W3138990046 creator A5052671475 @default.
- W3138990046 creator A5058626709 @default.
- W3138990046 creator A5069721379 @default.
- W3138990046 date "2021-03-24" @default.
- W3138990046 modified "2023-10-12" @default.
- W3138990046 title "Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States" @default.
- W3138990046 cites W1537239506 @default.
- W3138990046 cites W1810105897 @default.
- W3138990046 cites W1883948941 @default.
- W3138990046 cites W1965228281 @default.
- W3138990046 cites W1973023112 @default.
- W3138990046 cites W1982215158 @default.
- W3138990046 cites W1983818779 @default.
- W3138990046 cites W2027781877 @default.
- W3138990046 cites W2032075694 @default.
- W3138990046 cites W2079781770 @default.
- W3138990046 cites W2091134076 @default.
- W3138990046 cites W2101337510 @default.
- W3138990046 cites W2104164448 @default.
- W3138990046 cites W2114191733 @default.
- W3138990046 cites W2117653950 @default.
- W3138990046 cites W2129854181 @default.
- W3138990046 cites W2132824957 @default.
- W3138990046 cites W2138126656 @default.
- W3138990046 cites W2149005802 @default.
- W3138990046 cites W2155501250 @default.
- W3138990046 cites W2166283240 @default.
- W3138990046 cites W2235571426 @default.
- W3138990046 cites W2285057445 @default.
- W3138990046 cites W2288668267 @default.
- W3138990046 cites W2291224976 @default.
- W3138990046 cites W2297289199 @default.
- W3138990046 cites W2314293578 @default.
- W3138990046 cites W2324627161 @default.
- W3138990046 cites W2342926834 @default.
- W3138990046 cites W2461301683 @default.
- W3138990046 cites W2522011822 @default.
- W3138990046 cites W2577476128 @default.
- W3138990046 cites W2749034836 @default.
- W3138990046 cites W2767439536 @default.
- W3138990046 cites W2772401639 @default.
- W3138990046 cites W2773968504 @default.
- W3138990046 cites W2779539676 @default.
- W3138990046 cites W2804751386 @default.
- W3138990046 cites W2898603965 @default.
- W3138990046 cites W2898953392 @default.
- W3138990046 cites W2902522997 @default.
- W3138990046 cites W2918005684 @default.
- W3138990046 cites W2939407418 @default.
- W3138990046 cites W2940760419 @default.
- W3138990046 cites W2944369176 @default.
- W3138990046 cites W2946016901 @default.
- W3138990046 cites W2959298326 @default.
- W3138990046 cites W2964232166 @default.
- W3138990046 cites W2970450237 @default.
- W3138990046 cites W2973647025 @default.
- W3138990046 cites W2979420601 @default.
- W3138990046 cites W2995985781 @default.
- W3138990046 cites W2996605239 @default.
- W3138990046 cites W3023921799 @default.
- W3138990046 cites W3034494053 @default.
- W3138990046 doi "https://doi.org/10.5194/tc-15-1485-2021" @default.
- W3138990046 hasPublicationYear "2021" @default.
- W3138990046 type Work @default.
- W3138990046 sameAs 3138990046 @default.
- W3138990046 citedByCount "22" @default.
- W3138990046 countsByYear W31389900462021 @default.
- W3138990046 countsByYear W31389900462022 @default.
- W3138990046 countsByYear W31389900462023 @default.
- W3138990046 crossrefType "journal-article" @default.
- W3138990046 hasAuthorship W3138990046A5038823493 @default.
- W3138990046 hasAuthorship W3138990046A5041124953 @default.
- W3138990046 hasAuthorship W3138990046A5043290423 @default.
- W3138990046 hasAuthorship W3138990046A5044298876 @default.
- W3138990046 hasAuthorship W3138990046A5052671475 @default.
- W3138990046 hasAuthorship W3138990046A5058626709 @default.
- W3138990046 hasAuthorship W3138990046A5069721379 @default.
- W3138990046 hasBestOaLocation W31389900461 @default.
- W3138990046 hasConcept C105795698 @default.
- W3138990046 hasConcept C114793014 @default.
- W3138990046 hasConcept C127313418 @default.
- W3138990046 hasConcept C139945424 @default.
- W3138990046 hasConcept C197046000 @default.
- W3138990046 hasConcept C2778877292 @default.
- W3138990046 hasConcept C33923547 @default.
- W3138990046 hasConcept C39432304 @default.
- W3138990046 hasConcept C51399673 @default.
- W3138990046 hasConcept C62649853 @default.
- W3138990046 hasConceptScore W3138990046C105795698 @default.
- W3138990046 hasConceptScore W3138990046C114793014 @default.
- W3138990046 hasConceptScore W3138990046C127313418 @default.
- W3138990046 hasConceptScore W3138990046C139945424 @default.