Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138994410> ?p ?o ?g. }
- W3138994410 abstract "As a primary step in mineral exploration, a variety of features are mapped such as lithological units, alteration types, structures, and minerals. These features are extracted to aid decision-making in targeting ore deposits. Different types of remote sensing data including satellite optical and radar, airborne, and drone-based data make it possible to overcome problems associated with mapping these important parameters on the field. The rapid increase in the volume of remote sensing data obtained from different platforms has allowed scientists to develop advanced, innovative, and powerful data processing methodologies. Machine learning methods can help in processing a wide range of remote sensing data and in determining the relationship between the reflectance continuum and features of interest. Moreover, these methods are robust in processing spectral and ground truth measurements against noise and uncertainties. In recent years, many studies have been carried out by supplementing geological surveys with remote sensing data, and this area is now considered a hotspot in geoscience research. This paper reviews the implementation and adaptation of some popular and recently established machine learning methods for remote sensing data processing and investigates their applications for exploring different ore deposits. Lastly, the challenges and future directions in this critical interdisciplinary field are discussed." @default.
- W3138994410 created "2021-03-29" @default.
- W3138994410 creator A5043246042 @default.
- W3138994410 creator A5049019010 @default.
- W3138994410 creator A5061420825 @default.
- W3138994410 creator A5076485048 @default.
- W3138994410 date "2021-03-13" @default.
- W3138994410 modified "2023-09-27" @default.
- W3138994410 title "A review of machine learning in processing remote sensing data for mineral exploration" @default.
- W3138994410 cites W1578712794 @default.
- W3138994410 cites W1623080549 @default.
- W3138994410 cites W1710476689 @default.
- W3138994410 cites W1833595537 @default.
- W3138994410 cites W1873332500 @default.
- W3138994410 cites W1945616565 @default.
- W3138994410 cites W1963607549 @default.
- W3138994410 cites W1970804168 @default.
- W3138994410 cites W1984318235 @default.
- W3138994410 cites W1996202672 @default.
- W3138994410 cites W1998230732 @default.
- W3138994410 cites W1998943389 @default.
- W3138994410 cites W1999635212 @default.
- W3138994410 cites W2000532370 @default.
- W3138994410 cites W2003691420 @default.
- W3138994410 cites W2008347724 @default.
- W3138994410 cites W2012645943 @default.
- W3138994410 cites W2019875617 @default.
- W3138994410 cites W2024484366 @default.
- W3138994410 cites W2027442956 @default.
- W3138994410 cites W2030023077 @default.
- W3138994410 cites W2035565376 @default.
- W3138994410 cites W2043286242 @default.
- W3138994410 cites W2052195912 @default.
- W3138994410 cites W2055489107 @default.
- W3138994410 cites W2056435747 @default.
- W3138994410 cites W2061448156 @default.
- W3138994410 cites W2066050708 @default.
- W3138994410 cites W2067041472 @default.
- W3138994410 cites W2068172292 @default.
- W3138994410 cites W2076063813 @default.
- W3138994410 cites W2077865152 @default.
- W3138994410 cites W2082140503 @default.
- W3138994410 cites W2084469944 @default.
- W3138994410 cites W2085935437 @default.
- W3138994410 cites W2109205984 @default.
- W3138994410 cites W2113242816 @default.
- W3138994410 cites W2116132482 @default.
- W3138994410 cites W2119821739 @default.
- W3138994410 cites W2128686953 @default.
- W3138994410 cites W2140103896 @default.
- W3138994410 cites W2140740764 @default.
- W3138994410 cites W2150593711 @default.
- W3138994410 cites W2155806188 @default.
- W3138994410 cites W2162480849 @default.
- W3138994410 cites W2165394332 @default.
- W3138994410 cites W2169825195 @default.
- W3138994410 cites W2181348146 @default.
- W3138994410 cites W2188767531 @default.
- W3138994410 cites W2205737752 @default.
- W3138994410 cites W2212207508 @default.
- W3138994410 cites W2261059368 @default.
- W3138994410 cites W2265516356 @default.
- W3138994410 cites W2338171387 @default.
- W3138994410 cites W2464614383 @default.
- W3138994410 cites W2474156463 @default.
- W3138994410 cites W2526965274 @default.
- W3138994410 cites W2531131013 @default.
- W3138994410 cites W2545573415 @default.
- W3138994410 cites W2565909193 @default.
- W3138994410 cites W2575787230 @default.
- W3138994410 cites W2579656072 @default.
- W3138994410 cites W2596308992 @default.
- W3138994410 cites W2625326743 @default.
- W3138994410 cites W2740311783 @default.
- W3138994410 cites W2764022776 @default.
- W3138994410 cites W2765280539 @default.
- W3138994410 cites W2767447466 @default.
- W3138994410 cites W2768751965 @default.
- W3138994410 cites W2786878059 @default.
- W3138994410 cites W2789040646 @default.
- W3138994410 cites W2789758093 @default.
- W3138994410 cites W2789878394 @default.
- W3138994410 cites W2790126354 @default.
- W3138994410 cites W2792685313 @default.
- W3138994410 cites W2794333831 @default.
- W3138994410 cites W2797621410 @default.
- W3138994410 cites W2883471703 @default.
- W3138994410 cites W2887818698 @default.
- W3138994410 cites W2888842680 @default.
- W3138994410 cites W2900935605 @default.
- W3138994410 cites W2903721758 @default.
- W3138994410 cites W2904497035 @default.
- W3138994410 cites W2912934387 @default.
- W3138994410 cites W2914251781 @default.
- W3138994410 cites W2915018599 @default.
- W3138994410 cites W2915496660 @default.
- W3138994410 cites W2918827223 @default.
- W3138994410 cites W2932813851 @default.
- W3138994410 cites W2942047515 @default.
- W3138994410 cites W2947319370 @default.