Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138996948> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3138996948 abstract "Breast cancer is the second most common cancers discovered around the world and that record for one-fourth of all cancers in women. Among the other kinds of diseases, breast cancer causes more number of deaths in many countries. An early identification for breast tumor gives the opportunity of its cure; therefore, an extensive amount of investigations are presently setting on to recognize techniques that could identify breast cancer in its initial phases. The healthcare sector has a tremendous amount of information and imperative data about patients and their well-being conditions. Hence, it is the need of the hour to utilize that huge information for medical practitioners to predict the disease. One approach for taking care of this issue has been handled by numerous researchers utilizing Machine Learning (ML) strategies to upgrade the prediction procedure through applying different tree-based classifiers. However, most of the tree based ML algorithms will not be able to handle huge amount of complex data. This issue is addressed through efficient tree-based classifiers (Decision Tree, Random Forest classifier, gradient boosting classifier) with Apache Spark framework. The experiments are conducted using Wisconsin Breast Cancer Dataset (WBCD) from UCI repository. Experimental results have demonstrated that the Random Forest Classifier outperformed the other two tree-based classification algorithms in most of the cases form this research study." @default.
- W3138996948 created "2021-03-29" @default.
- W3138996948 creator A5003985544 @default.
- W3138996948 creator A5019612956 @default.
- W3138996948 creator A5029072914 @default.
- W3138996948 creator A5032432430 @default.
- W3138996948 creator A5048221860 @default.
- W3138996948 creator A5087342925 @default.
- W3138996948 creator A5091231255 @default.
- W3138996948 date "2017-01-01" @default.
- W3138996948 modified "2023-09-26" @default.
- W3138996948 title "Spark Based Framework for Breast Cancer Analysis" @default.
- W3138996948 doi "https://doi.org/10.2139/ssrn.3125283" @default.
- W3138996948 hasPublicationYear "2017" @default.
- W3138996948 type Work @default.
- W3138996948 sameAs 3138996948 @default.
- W3138996948 citedByCount "1" @default.
- W3138996948 countsByYear W31389969482020 @default.
- W3138996948 crossrefType "journal-article" @default.
- W3138996948 hasAuthorship W3138996948A5003985544 @default.
- W3138996948 hasAuthorship W3138996948A5019612956 @default.
- W3138996948 hasAuthorship W3138996948A5029072914 @default.
- W3138996948 hasAuthorship W3138996948A5032432430 @default.
- W3138996948 hasAuthorship W3138996948A5048221860 @default.
- W3138996948 hasAuthorship W3138996948A5087342925 @default.
- W3138996948 hasAuthorship W3138996948A5091231255 @default.
- W3138996948 hasConcept C119857082 @default.
- W3138996948 hasConcept C121608353 @default.
- W3138996948 hasConcept C124101348 @default.
- W3138996948 hasConcept C126322002 @default.
- W3138996948 hasConcept C154945302 @default.
- W3138996948 hasConcept C160735492 @default.
- W3138996948 hasConcept C162324750 @default.
- W3138996948 hasConcept C169258074 @default.
- W3138996948 hasConcept C41008148 @default.
- W3138996948 hasConcept C50522688 @default.
- W3138996948 hasConcept C530470458 @default.
- W3138996948 hasConcept C5481197 @default.
- W3138996948 hasConcept C71924100 @default.
- W3138996948 hasConcept C84525736 @default.
- W3138996948 hasConcept C95623464 @default.
- W3138996948 hasConceptScore W3138996948C119857082 @default.
- W3138996948 hasConceptScore W3138996948C121608353 @default.
- W3138996948 hasConceptScore W3138996948C124101348 @default.
- W3138996948 hasConceptScore W3138996948C126322002 @default.
- W3138996948 hasConceptScore W3138996948C154945302 @default.
- W3138996948 hasConceptScore W3138996948C160735492 @default.
- W3138996948 hasConceptScore W3138996948C162324750 @default.
- W3138996948 hasConceptScore W3138996948C169258074 @default.
- W3138996948 hasConceptScore W3138996948C41008148 @default.
- W3138996948 hasConceptScore W3138996948C50522688 @default.
- W3138996948 hasConceptScore W3138996948C530470458 @default.
- W3138996948 hasConceptScore W3138996948C5481197 @default.
- W3138996948 hasConceptScore W3138996948C71924100 @default.
- W3138996948 hasConceptScore W3138996948C84525736 @default.
- W3138996948 hasConceptScore W3138996948C95623464 @default.
- W3138996948 hasLocation W31389969481 @default.
- W3138996948 hasOpenAccess W3138996948 @default.
- W3138996948 hasPrimaryLocation W31389969481 @default.
- W3138996948 hasRelatedWork W2106096768 @default.
- W3138996948 hasRelatedWork W2141934850 @default.
- W3138996948 hasRelatedWork W2192317975 @default.
- W3138996948 hasRelatedWork W2289087065 @default.
- W3138996948 hasRelatedWork W2324255546 @default.
- W3138996948 hasRelatedWork W2332685232 @default.
- W3138996948 hasRelatedWork W2610879212 @default.
- W3138996948 hasRelatedWork W2888875877 @default.
- W3138996948 hasRelatedWork W2903824350 @default.
- W3138996948 hasRelatedWork W2913176145 @default.
- W3138996948 hasRelatedWork W2954378368 @default.
- W3138996948 hasRelatedWork W2965231525 @default.
- W3138996948 hasRelatedWork W2986798853 @default.
- W3138996948 hasRelatedWork W2999877148 @default.
- W3138996948 hasRelatedWork W3047321833 @default.
- W3138996948 hasRelatedWork W3082297017 @default.
- W3138996948 hasRelatedWork W3131480062 @default.
- W3138996948 hasRelatedWork W3198767112 @default.
- W3138996948 hasRelatedWork W3213693187 @default.
- W3138996948 hasRelatedWork W2329123921 @default.
- W3138996948 isParatext "false" @default.
- W3138996948 isRetracted "false" @default.
- W3138996948 magId "3138996948" @default.
- W3138996948 workType "article" @default.