Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139042865> ?p ?o ?g. }
- W3139042865 endingPage "e06480" @default.
- W3139042865 startingPage "e06480" @default.
- W3139042865 abstract "Currently, many Pedotransfer Functions (PTFs) are being developed to predict certain soil properties worldwide, especially for difficult and time-consuming parameters to measure. However, very few studies have been done to assess the feasibility of using PTFs (regression or machine learning methods) for predicting soil aggregate stability. Also, the Random Forest (RF) method has never been used before to predict this parameter, and no study was found concerning the use of PTFs methods to estimate soil parameters in Morocco. Therefore, the current study was conducted in the three watersheds of Settat- Ben Ahmed Plateau, located in the center of Morocco and covering approximately 1000 km2. The purpose of this study is to compare the capabilities of the machine learning technique (Random Forest) and Multiple Linear Regression (MLR) to predict the Mean Weight Diameter (MWD) as an index of soil aggregate stability using soil properties from two sources data sets and remote sensing data. The performance of the models was evaluated using a 10-fold cross-validation procedure. The results achieved were acceptable in predicting soil aggregate stability and similar for both models. Thus, the addition of remote sensing indices to soil properties does not improve models. Results also show that organic matter is the most relevant variable for predicting soil aggregate stability for both models. The developed models can be used to predict the soil aggregate stability in this region and avoid waste of time and money deployed for analyses. However, we recommend using the largest and most uniform possible data set to achieve more accurate results." @default.
- W3139042865 created "2021-03-29" @default.
- W3139042865 creator A5022512440 @default.
- W3139042865 creator A5030823442 @default.
- W3139042865 creator A5091784188 @default.
- W3139042865 date "2021-03-01" @default.
- W3139042865 modified "2023-10-01" @default.
- W3139042865 title "Machine learning approaches for the prediction of soil aggregate stability" @default.
- W3139042865 cites W11152839 @default.
- W3139042865 cites W1547373531 @default.
- W3139042865 cites W195679747 @default.
- W3139042865 cites W1964163958 @default.
- W3139042865 cites W1964217023 @default.
- W3139042865 cites W1965538051 @default.
- W3139042865 cites W1972617376 @default.
- W3139042865 cites W1978617972 @default.
- W3139042865 cites W2014897524 @default.
- W3139042865 cites W2032698113 @default.
- W3139042865 cites W2035563959 @default.
- W3139042865 cites W2037524467 @default.
- W3139042865 cites W2046836861 @default.
- W3139042865 cites W2049398443 @default.
- W3139042865 cites W2053402935 @default.
- W3139042865 cites W2055137896 @default.
- W3139042865 cites W2073639116 @default.
- W3139042865 cites W2081255089 @default.
- W3139042865 cites W2083735459 @default.
- W3139042865 cites W2084634305 @default.
- W3139042865 cites W2091160252 @default.
- W3139042865 cites W2096990904 @default.
- W3139042865 cites W2101533953 @default.
- W3139042865 cites W2123214288 @default.
- W3139042865 cites W2139086914 @default.
- W3139042865 cites W2140673614 @default.
- W3139042865 cites W2148574664 @default.
- W3139042865 cites W2155300412 @default.
- W3139042865 cites W2158791531 @default.
- W3139042865 cites W2161548576 @default.
- W3139042865 cites W2169913584 @default.
- W3139042865 cites W2185223470 @default.
- W3139042865 cites W2274117189 @default.
- W3139042865 cites W2297448524 @default.
- W3139042865 cites W2329318263 @default.
- W3139042865 cites W2477413195 @default.
- W3139042865 cites W2527967805 @default.
- W3139042865 cites W2532520249 @default.
- W3139042865 cites W2556857783 @default.
- W3139042865 cites W2583742254 @default.
- W3139042865 cites W2588219442 @default.
- W3139042865 cites W2738849672 @default.
- W3139042865 cites W2757049306 @default.
- W3139042865 cites W2769675690 @default.
- W3139042865 cites W2771841295 @default.
- W3139042865 cites W2772726360 @default.
- W3139042865 cites W2795092029 @default.
- W3139042865 cites W2810810551 @default.
- W3139042865 cites W2893295979 @default.
- W3139042865 cites W2897666432 @default.
- W3139042865 cites W2908031888 @default.
- W3139042865 cites W2911964244 @default.
- W3139042865 cites W2914965248 @default.
- W3139042865 cites W2970649468 @default.
- W3139042865 cites W2973687236 @default.
- W3139042865 cites W3004994287 @default.
- W3139042865 cites W3025406257 @default.
- W3139042865 cites W3088105443 @default.
- W3139042865 doi "https://doi.org/10.1016/j.heliyon.2021.e06480" @default.
- W3139042865 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7970365" @default.
- W3139042865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33748507" @default.
- W3139042865 hasPublicationYear "2021" @default.
- W3139042865 type Work @default.
- W3139042865 sameAs 3139042865 @default.
- W3139042865 citedByCount "16" @default.
- W3139042865 countsByYear W31390428652021 @default.
- W3139042865 countsByYear W31390428652022 @default.
- W3139042865 countsByYear W31390428652023 @default.
- W3139042865 crossrefType "journal-article" @default.
- W3139042865 hasAuthorship W3139042865A5022512440 @default.
- W3139042865 hasAuthorship W3139042865A5030823442 @default.
- W3139042865 hasAuthorship W3139042865A5091784188 @default.
- W3139042865 hasBestOaLocation W31390428651 @default.
- W3139042865 hasConcept C105795698 @default.
- W3139042865 hasConcept C112972136 @default.
- W3139042865 hasConcept C119857082 @default.
- W3139042865 hasConcept C159390177 @default.
- W3139042865 hasConcept C159750122 @default.
- W3139042865 hasConcept C159985019 @default.
- W3139042865 hasConcept C164285268 @default.
- W3139042865 hasConcept C169258074 @default.
- W3139042865 hasConcept C192562407 @default.
- W3139042865 hasConcept C33923547 @default.
- W3139042865 hasConcept C39432304 @default.
- W3139042865 hasConcept C41008148 @default.
- W3139042865 hasConcept C45804977 @default.
- W3139042865 hasConcept C4679612 @default.
- W3139042865 hasConcept C48921125 @default.
- W3139042865 hasConcept C63184880 @default.
- W3139042865 hasConceptScore W3139042865C105795698 @default.