Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139048049> ?p ?o ?g. }
- W3139048049 endingPage "58" @default.
- W3139048049 startingPage "48" @default.
- W3139048049 abstract "Short message service (SMS) is a most favored communication service people use in daily life. However, this service is being misused by spammers. Rule based systems (RBS) and content based filtering (CBF) techniques have been developed to filter out spam messages. New rules can be easily added into RBS, but the throughput usually reduces as the rules increase. The bag-of-words (BoW) assumption based CBF techniques ignore the word order, which use machine learning methods to extract features from SMS message body according to word frequency and distribution. Striving to improve performance, researchers developed hybrid models that made algorithms ever-more complex. In addition, frequently conducting the time consuming models training and deployment forces the anti-spam industry still rely mainly on rule-based systems with unsolved throughput issue. A discrete Hidden Markov Model (HMM) was proposed in our previous study to address these issues, and the HMM method achieved a comparable performance to the deep learning methods. To further improve the performance of HMM method, we propose a new approach to weight and label words in SMS for formatting the observation sequence in HMM method. The weighted feature enhanced HMM achieves higher accuracy, and much faster training and filtering speed for meeting the anti-spam industry requirement. The performance comparison with other machine learning methods is conducted on the same open respiratory data set maintained by University of California, Irvine (UCI). Experimental results show that the weighted features enhanced HMM outperforms the LSTM (long short-term memory model) and close to CNN (convolutional neural network) in terms of classification accuracy. In addition, a Chinese SMS data set is used to further validate filtering accuracy and filtering speed." @default.
- W3139048049 created "2021-03-29" @default.
- W3139048049 creator A5013375307 @default.
- W3139048049 creator A5081641600 @default.
- W3139048049 date "2021-07-01" @default.
- W3139048049 modified "2023-09-27" @default.
- W3139048049 title "A weighted feature enhanced Hidden Markov Model for spam SMS filtering" @default.
- W3139048049 cites W1120896806 @default.
- W3139048049 cites W1964752234 @default.
- W3139048049 cites W1995258314 @default.
- W3139048049 cites W2023361923 @default.
- W3139048049 cites W2066730274 @default.
- W3139048049 cites W2076462531 @default.
- W3139048049 cites W2082418604 @default.
- W3139048049 cites W2092022777 @default.
- W3139048049 cites W2105594594 @default.
- W3139048049 cites W2346695464 @default.
- W3139048049 cites W2509375105 @default.
- W3139048049 cites W2587887365 @default.
- W3139048049 cites W2738417325 @default.
- W3139048049 cites W2753238662 @default.
- W3139048049 cites W2760997042 @default.
- W3139048049 cites W2767189351 @default.
- W3139048049 cites W2774353014 @default.
- W3139048049 cites W2783922631 @default.
- W3139048049 cites W2790215293 @default.
- W3139048049 cites W2793412634 @default.
- W3139048049 cites W2898658722 @default.
- W3139048049 cites W2911273633 @default.
- W3139048049 cites W2915714139 @default.
- W3139048049 cites W2945475639 @default.
- W3139048049 cites W2949836779 @default.
- W3139048049 cites W2963358003 @default.
- W3139048049 cites W2965901996 @default.
- W3139048049 cites W2966971419 @default.
- W3139048049 cites W2971852873 @default.
- W3139048049 cites W2972759136 @default.
- W3139048049 cites W2996930874 @default.
- W3139048049 cites W3009779595 @default.
- W3139048049 cites W3009983180 @default.
- W3139048049 cites W3019114689 @default.
- W3139048049 cites W3023654361 @default.
- W3139048049 cites W3027546307 @default.
- W3139048049 cites W3037374573 @default.
- W3139048049 cites W3044988204 @default.
- W3139048049 cites W3049686946 @default.
- W3139048049 cites W3082334751 @default.
- W3139048049 cites W3085571720 @default.
- W3139048049 doi "https://doi.org/10.1016/j.neucom.2021.02.075" @default.
- W3139048049 hasPublicationYear "2021" @default.
- W3139048049 type Work @default.
- W3139048049 sameAs 3139048049 @default.
- W3139048049 citedByCount "20" @default.
- W3139048049 countsByYear W31390480492021 @default.
- W3139048049 countsByYear W31390480492022 @default.
- W3139048049 countsByYear W31390480492023 @default.
- W3139048049 crossrefType "journal-article" @default.
- W3139048049 hasAuthorship W3139048049A5013375307 @default.
- W3139048049 hasAuthorship W3139048049A5081641600 @default.
- W3139048049 hasConcept C106131492 @default.
- W3139048049 hasConcept C111919701 @default.
- W3139048049 hasConcept C119857082 @default.
- W3139048049 hasConcept C138885662 @default.
- W3139048049 hasConcept C154945302 @default.
- W3139048049 hasConcept C162324750 @default.
- W3139048049 hasConcept C187736073 @default.
- W3139048049 hasConcept C23224414 @default.
- W3139048049 hasConcept C2776401178 @default.
- W3139048049 hasConcept C2780451532 @default.
- W3139048049 hasConcept C28490314 @default.
- W3139048049 hasConcept C31972630 @default.
- W3139048049 hasConcept C35639132 @default.
- W3139048049 hasConcept C41008148 @default.
- W3139048049 hasConcept C41895202 @default.
- W3139048049 hasConcept C74558129 @default.
- W3139048049 hasConcept C81363708 @default.
- W3139048049 hasConceptScore W3139048049C106131492 @default.
- W3139048049 hasConceptScore W3139048049C111919701 @default.
- W3139048049 hasConceptScore W3139048049C119857082 @default.
- W3139048049 hasConceptScore W3139048049C138885662 @default.
- W3139048049 hasConceptScore W3139048049C154945302 @default.
- W3139048049 hasConceptScore W3139048049C162324750 @default.
- W3139048049 hasConceptScore W3139048049C187736073 @default.
- W3139048049 hasConceptScore W3139048049C23224414 @default.
- W3139048049 hasConceptScore W3139048049C2776401178 @default.
- W3139048049 hasConceptScore W3139048049C2780451532 @default.
- W3139048049 hasConceptScore W3139048049C28490314 @default.
- W3139048049 hasConceptScore W3139048049C31972630 @default.
- W3139048049 hasConceptScore W3139048049C35639132 @default.
- W3139048049 hasConceptScore W3139048049C41008148 @default.
- W3139048049 hasConceptScore W3139048049C41895202 @default.
- W3139048049 hasConceptScore W3139048049C74558129 @default.
- W3139048049 hasConceptScore W3139048049C81363708 @default.
- W3139048049 hasFunder F4320329022 @default.
- W3139048049 hasLocation W31390480491 @default.
- W3139048049 hasOpenAccess W3139048049 @default.
- W3139048049 hasPrimaryLocation W31390480491 @default.
- W3139048049 hasRelatedWork W1615515845 @default.