Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139064323> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3139064323 abstract "Conventional channel codes are designed to recover channel errors by adding controlled redundancy to transmit bits; however, the main underlying assumption is that information bits are independent and identically distributed (i.i.d.). Short term and linear temporal correlations are assumed to be exploited by the preceding source encoders. This assumption is flawed in some scenarios since many types of data (e.g, audio samples, video frames, and sensor measurements) exhibit long-term relations and intricate dependencies that are not exploitable by conventional source encoders. Furthermore, sending plain information is still commonplace in wireless networks. Therefore, it is essential to design channel encoders that accommodate these conditions. It is well-known that the underlying hidden patterns can be captured by deep learning methods. This important capability is not yet fully utilized in channel encoder design. This work is a primary step towards developing a predictive channel decoder that learns the intricate dependencies within and between data frames using an embedded learning module at the receiver to enhance the bit decoding performance, especially in high-noise regimes. The learning module is integrated with the belief propagation algorithm over bipartite graphs appropriate for low-density parity-check (LDPC) codes. The proposed method is universal since no specific correlation model is adopted and the learning-based prediction is performed at the bit level. The proposed method is fully implemented at the receiver side, making it compatible with generic LDPC encoders. Our simulations demonstrate the superior performance of the proposed method compared to standard LDPC decoders. For instance, about 1.7 dB gain at the 10 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-4</sup> BER level is achieved when recovering noisy audio files." @default.
- W3139064323 created "2021-03-29" @default.
- W3139064323 creator A5011987346 @default.
- W3139064323 creator A5025599215 @default.
- W3139064323 creator A5048987045 @default.
- W3139064323 creator A5059614356 @default.
- W3139064323 date "2021-01-09" @default.
- W3139064323 modified "2023-10-03" @default.
- W3139064323 title "Boosting Belief Propagation for LDPC Codes with Deep Convolutional Neural Network Predictors" @default.
- W3139064323 cites W1592929868 @default.
- W3139064323 cites W1825164805 @default.
- W3139064323 cites W1966930829 @default.
- W3139064323 cites W2099111195 @default.
- W3139064323 cites W2112959078 @default.
- W3139064323 cites W2133068391 @default.
- W3139064323 cites W2137813581 @default.
- W3139064323 cites W2156309670 @default.
- W3139064323 cites W2167149929 @default.
- W3139064323 cites W2169792341 @default.
- W3139064323 cites W2946376398 @default.
- W3139064323 cites W2963657860 @default.
- W3139064323 cites W58580312 @default.
- W3139064323 doi "https://doi.org/10.1109/ccnc49032.2021.9369460" @default.
- W3139064323 hasPublicationYear "2021" @default.
- W3139064323 type Work @default.
- W3139064323 sameAs 3139064323 @default.
- W3139064323 citedByCount "1" @default.
- W3139064323 countsByYear W31390643232023 @default.
- W3139064323 crossrefType "proceedings-article" @default.
- W3139064323 hasAuthorship W3139064323A5011987346 @default.
- W3139064323 hasAuthorship W3139064323A5025599215 @default.
- W3139064323 hasAuthorship W3139064323A5048987045 @default.
- W3139064323 hasAuthorship W3139064323A5059614356 @default.
- W3139064323 hasConcept C111919701 @default.
- W3139064323 hasConcept C113775141 @default.
- W3139064323 hasConcept C11413529 @default.
- W3139064323 hasConcept C118505674 @default.
- W3139064323 hasConcept C127162648 @default.
- W3139064323 hasConcept C152124472 @default.
- W3139064323 hasConcept C152948882 @default.
- W3139064323 hasConcept C157899210 @default.
- W3139064323 hasConcept C41008148 @default.
- W3139064323 hasConcept C57273362 @default.
- W3139064323 hasConcept C67692717 @default.
- W3139064323 hasConcept C76155785 @default.
- W3139064323 hasConcept C80444323 @default.
- W3139064323 hasConceptScore W3139064323C111919701 @default.
- W3139064323 hasConceptScore W3139064323C113775141 @default.
- W3139064323 hasConceptScore W3139064323C11413529 @default.
- W3139064323 hasConceptScore W3139064323C118505674 @default.
- W3139064323 hasConceptScore W3139064323C127162648 @default.
- W3139064323 hasConceptScore W3139064323C152124472 @default.
- W3139064323 hasConceptScore W3139064323C152948882 @default.
- W3139064323 hasConceptScore W3139064323C157899210 @default.
- W3139064323 hasConceptScore W3139064323C41008148 @default.
- W3139064323 hasConceptScore W3139064323C57273362 @default.
- W3139064323 hasConceptScore W3139064323C67692717 @default.
- W3139064323 hasConceptScore W3139064323C76155785 @default.
- W3139064323 hasConceptScore W3139064323C80444323 @default.
- W3139064323 hasFunder F4320321001 @default.
- W3139064323 hasLocation W31390643231 @default.
- W3139064323 hasOpenAccess W3139064323 @default.
- W3139064323 hasPrimaryLocation W31390643231 @default.
- W3139064323 hasRelatedWork W2041362683 @default.
- W3139064323 hasRelatedWork W2135229457 @default.
- W3139064323 hasRelatedWork W2155783837 @default.
- W3139064323 hasRelatedWork W2164397492 @default.
- W3139064323 hasRelatedWork W2350834058 @default.
- W3139064323 hasRelatedWork W2374503462 @default.
- W3139064323 hasRelatedWork W2381954333 @default.
- W3139064323 hasRelatedWork W2382848370 @default.
- W3139064323 hasRelatedWork W2394364986 @default.
- W3139064323 hasRelatedWork W2591644370 @default.
- W3139064323 isParatext "false" @default.
- W3139064323 isRetracted "false" @default.
- W3139064323 magId "3139064323" @default.
- W3139064323 workType "article" @default.