Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139098122> ?p ?o ?g. }
- W3139098122 endingPage "101267" @default.
- W3139098122 startingPage "101267" @default.
- W3139098122 abstract "Moving towards sustainable products and services in regions with fragile ecosystems needs plant species such as Moringa peregrina (Forssk) that will contribute to the restoration of the land and the development of the societies. This tree species is known as a source of income for local people via preparing medicine, food, industrial oil, livestock feed, and an effective role in water and soil conservation. In recent years, the reduction of M. peregrina has damaged ecosystem services in south-eastern Iran. According, the main objective of this study is to use new Machine Learning (ML) models include: Support Vector Machine (SVM), Multivariate Discriminant Analysis (MDA), Random Forest (RF), and Classification and Regression Trees (CART) to predict the regions susceptible to M. peregrine recovery. South Baluchistan in Iran was selected as a study area due to its location in a represent amen region where sustainable environmental production is threatened by land degradation processes. The location of 83-plant mass of M. peregrina was recorded in field visits by a global positioning system (GPS) device to recognize the relationship between them and thirteen meteorological, morphometric, and geological indicators. Within the 83 selected sites, 70% of them were used for training and 30% used for ML models calibration to predict the susceptible growth regions of M. peregrina to determine the most important indicators affecting his presence and to determine the prediction accuracy for ML models, the Jackknife test method and the area under the receiver operating characteristics curve (AUC) were used, respectively. The results showed that rainfall was the key indicator that determines the success of the plant establishment. So that, it had the most value of the percentage of relative decrease (PRD) as the following was 20.68, 30, 24.52, and 14 for the SVM, MDA, RF, and CART models, respectively. Models validation showed that the RF model with an AUC value of 0.882, is an efficient and reliable model to predict the regions susceptible to growth M. peregrina. It followed by the CART (0.849), MDA (0.832), and SVM (0.827). The final map of the RF method demonstrated that the area with a higher probability for growing M. peregrina is the wettest one. The results of this investigation are the potential map of M. peregrina growth that will contribute to the restoration of the land and will increase primary production, water, and soil protection, increase local people's income and achieve the Sustainable Development Goals (SDGs)." @default.
- W3139098122 created "2021-03-29" @default.
- W3139098122 creator A5011066169 @default.
- W3139098122 creator A5013740384 @default.
- W3139098122 creator A5032359465 @default.
- W3139098122 creator A5036176495 @default.
- W3139098122 creator A5038333096 @default.
- W3139098122 creator A5064329463 @default.
- W3139098122 creator A5090671205 @default.
- W3139098122 date "2021-05-01" @default.
- W3139098122 modified "2023-10-09" @default.
- W3139098122 title "Machine learning approach to predict susceptible growth regions of Moringa peregrina (Forssk)" @default.
- W3139098122 cites W1532630953 @default.
- W3139098122 cites W1541774929 @default.
- W3139098122 cites W1970143148 @default.
- W3139098122 cites W1982172294 @default.
- W3139098122 cites W1986439107 @default.
- W3139098122 cites W1995581599 @default.
- W3139098122 cites W1997285633 @default.
- W3139098122 cites W1999344577 @default.
- W3139098122 cites W2016544456 @default.
- W3139098122 cites W2024767324 @default.
- W3139098122 cites W2027727130 @default.
- W3139098122 cites W2030675529 @default.
- W3139098122 cites W2036154117 @default.
- W3139098122 cites W2042867544 @default.
- W3139098122 cites W2045855571 @default.
- W3139098122 cites W2063987149 @default.
- W3139098122 cites W2069814665 @default.
- W3139098122 cites W2070613674 @default.
- W3139098122 cites W2078964569 @default.
- W3139098122 cites W2080092916 @default.
- W3139098122 cites W2095706676 @default.
- W3139098122 cites W2097601813 @default.
- W3139098122 cites W2114595102 @default.
- W3139098122 cites W2123337039 @default.
- W3139098122 cites W2124350766 @default.
- W3139098122 cites W2125648425 @default.
- W3139098122 cites W2139086914 @default.
- W3139098122 cites W2146357111 @default.
- W3139098122 cites W2155122816 @default.
- W3139098122 cites W2158255202 @default.
- W3139098122 cites W2204063671 @default.
- W3139098122 cites W2208293910 @default.
- W3139098122 cites W2318568688 @default.
- W3139098122 cites W2322983684 @default.
- W3139098122 cites W2399256650 @default.
- W3139098122 cites W2549184242 @default.
- W3139098122 cites W2552690540 @default.
- W3139098122 cites W2723919478 @default.
- W3139098122 cites W2761698665 @default.
- W3139098122 cites W2763383283 @default.
- W3139098122 cites W2766228856 @default.
- W3139098122 cites W2773213923 @default.
- W3139098122 cites W2775745878 @default.
- W3139098122 cites W2794358659 @default.
- W3139098122 cites W2800133189 @default.
- W3139098122 cites W2809655743 @default.
- W3139098122 cites W2887585643 @default.
- W3139098122 cites W2895196240 @default.
- W3139098122 cites W2899645870 @default.
- W3139098122 cites W2908664309 @default.
- W3139098122 cites W2911964244 @default.
- W3139098122 cites W2936617453 @default.
- W3139098122 cites W2946633629 @default.
- W3139098122 cites W2955615399 @default.
- W3139098122 cites W2966302898 @default.
- W3139098122 cites W2973292464 @default.
- W3139098122 cites W2978577426 @default.
- W3139098122 cites W2984417934 @default.
- W3139098122 cites W2995346733 @default.
- W3139098122 cites W2998559173 @default.
- W3139098122 cites W2999232473 @default.
- W3139098122 cites W3001840816 @default.
- W3139098122 cites W3044845622 @default.
- W3139098122 cites W3096894036 @default.
- W3139098122 cites W4239510810 @default.
- W3139098122 cites W4252567288 @default.
- W3139098122 doi "https://doi.org/10.1016/j.ecoinf.2021.101267" @default.
- W3139098122 hasPublicationYear "2021" @default.
- W3139098122 type Work @default.
- W3139098122 sameAs 3139098122 @default.
- W3139098122 citedByCount "7" @default.
- W3139098122 countsByYear W31390981222022 @default.
- W3139098122 countsByYear W31390981222023 @default.
- W3139098122 crossrefType "journal-article" @default.
- W3139098122 hasAuthorship W3139098122A5011066169 @default.
- W3139098122 hasAuthorship W3139098122A5013740384 @default.
- W3139098122 hasAuthorship W3139098122A5032359465 @default.
- W3139098122 hasAuthorship W3139098122A5036176495 @default.
- W3139098122 hasAuthorship W3139098122A5038333096 @default.
- W3139098122 hasAuthorship W3139098122A5064329463 @default.
- W3139098122 hasAuthorship W3139098122A5090671205 @default.
- W3139098122 hasConcept C112964050 @default.
- W3139098122 hasConcept C119857082 @default.
- W3139098122 hasConcept C12267149 @default.
- W3139098122 hasConcept C154945302 @default.
- W3139098122 hasConcept C161584116 @default.