Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139117707> ?p ?o ?g. }
- W3139117707 abstract "Methane hydrates are solid structures containing methane inside of a water lattice that form under low temperature and relatively high pressure. Appropriate hydrate-forming conditions exist along continental shelves or are associated with permafrost. Hydrates have garnered scientific interest via their potential as a source of natural gas and their role in the global carbon cycle. While methane hydrates have been collected in multiple diverse geographic settings, their quantities and distribution in sediments remain poorly constrained due to sparse relevant data. Using statistical and machine learning approaches, we have developed a workflow to probabilistically predict methane hydrate occurrence from local microbial methane sourcing. This approach utilizes machine-learned global maps produced by the Global Predictive Seabed Model (GPSM) as inputs for the statistical sampling software, Dakota, and multiphase reservoir simulation software, PFLOTRAN. Dakota performs Latin hypercube sampling of the GPSM-predicted values and uncertainties to generate unique sets of input parameters for 1-D PFLOTRAN simulations of gas hydrate and free gas formation resulting from methanogenesis to steady state. We ran 100 1-D simulations spanning a kilometer in depth at 5,297 locations near Blake Ridge. Masses of hydrate and free gas formed at each location were determined by integrating the predicted saturation profiles. Elevated hydrate formation is predicted to occur at depths >500 meters below sea level at this location, and is strongly associated with high seafloor total organic carbon values. We produce representative maps of expected hydrate occurrence for the study area based on multiple realizations that can be validated against geophysical observations." @default.
- W3139117707 created "2021-03-29" @default.
- W3139117707 creator A5008778520 @default.
- W3139117707 creator A5033986814 @default.
- W3139117707 creator A5042858034 @default.
- W3139117707 creator A5064350004 @default.
- W3139117707 creator A5063246655 @default.
- W3139117707 date "2021-04-01" @default.
- W3139117707 modified "2023-10-02" @default.
- W3139117707 title "Prediction of Gas Hydrate Formation at Blake Ridge Using Machine Learning and Probabilistic Reservoir Simulation" @default.
- W3139117707 cites W1503659712 @default.
- W3139117707 cites W1554338937 @default.
- W3139117707 cites W1669681213 @default.
- W3139117707 cites W1847986692 @default.
- W3139117707 cites W1898950615 @default.
- W3139117707 cites W1919849902 @default.
- W3139117707 cites W1941867818 @default.
- W3139117707 cites W1979038006 @default.
- W3139117707 cites W1980684256 @default.
- W3139117707 cites W1989013392 @default.
- W3139117707 cites W2003673844 @default.
- W3139117707 cites W2007452684 @default.
- W3139117707 cites W2011647863 @default.
- W3139117707 cites W2012350539 @default.
- W3139117707 cites W2015512094 @default.
- W3139117707 cites W2020397169 @default.
- W3139117707 cites W2031775895 @default.
- W3139117707 cites W2035809907 @default.
- W3139117707 cites W2045780987 @default.
- W3139117707 cites W2047196822 @default.
- W3139117707 cites W2051317012 @default.
- W3139117707 cites W2052572989 @default.
- W3139117707 cites W2056303247 @default.
- W3139117707 cites W2061647526 @default.
- W3139117707 cites W2065236035 @default.
- W3139117707 cites W2068162320 @default.
- W3139117707 cites W2071165546 @default.
- W3139117707 cites W2077674450 @default.
- W3139117707 cites W2090311853 @default.
- W3139117707 cites W2091876039 @default.
- W3139117707 cites W2102455575 @default.
- W3139117707 cites W2103845974 @default.
- W3139117707 cites W2104022239 @default.
- W3139117707 cites W2109133612 @default.
- W3139117707 cites W2114019261 @default.
- W3139117707 cites W2117006714 @default.
- W3139117707 cites W2117056102 @default.
- W3139117707 cites W2134004769 @default.
- W3139117707 cites W2136981791 @default.
- W3139117707 cites W2153353382 @default.
- W3139117707 cites W2167727917 @default.
- W3139117707 cites W2182211652 @default.
- W3139117707 cites W2283103936 @default.
- W3139117707 cites W2477772245 @default.
- W3139117707 cites W2538349044 @default.
- W3139117707 cites W2565721251 @default.
- W3139117707 cites W2580543353 @default.
- W3139117707 cites W2587214578 @default.
- W3139117707 cites W2592518905 @default.
- W3139117707 cites W2610786196 @default.
- W3139117707 cites W2736613777 @default.
- W3139117707 cites W2750179771 @default.
- W3139117707 cites W2794980909 @default.
- W3139117707 cites W2907713084 @default.
- W3139117707 cites W2919686461 @default.
- W3139117707 cites W2944227774 @default.
- W3139117707 cites W2960201994 @default.
- W3139117707 cites W2968914048 @default.
- W3139117707 cites W2969589171 @default.
- W3139117707 cites W2971602530 @default.
- W3139117707 cites W3041648736 @default.
- W3139117707 cites W3131147463 @default.
- W3139117707 cites W4242769917 @default.
- W3139117707 cites W4243645092 @default.
- W3139117707 cites W4248990833 @default.
- W3139117707 doi "https://doi.org/10.1029/2020gc009574" @default.
- W3139117707 hasPublicationYear "2021" @default.
- W3139117707 type Work @default.
- W3139117707 sameAs 3139117707 @default.
- W3139117707 citedByCount "4" @default.
- W3139117707 countsByYear W31391177072022 @default.
- W3139117707 crossrefType "journal-article" @default.
- W3139117707 hasAuthorship W3139117707A5008778520 @default.
- W3139117707 hasAuthorship W3139117707A5033986814 @default.
- W3139117707 hasAuthorship W3139117707A5042858034 @default.
- W3139117707 hasAuthorship W3139117707A5063246655 @default.
- W3139117707 hasAuthorship W3139117707A5064350004 @default.
- W3139117707 hasBestOaLocation W31391177071 @default.
- W3139117707 hasConcept C100402318 @default.
- W3139117707 hasConcept C111368507 @default.
- W3139117707 hasConcept C117485682 @default.
- W3139117707 hasConcept C127313418 @default.
- W3139117707 hasConcept C15098985 @default.
- W3139117707 hasConcept C162284963 @default.
- W3139117707 hasConcept C178790620 @default.
- W3139117707 hasConcept C185592680 @default.
- W3139117707 hasConcept C2781060337 @default.
- W3139117707 hasConcept C516920438 @default.
- W3139117707 hasConcept C5900021 @default.
- W3139117707 hasConcept C59427239 @default.