Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139117962> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3139117962 endingPage "321" @default.
- W3139117962 startingPage "309" @default.
- W3139117962 abstract "<h2>Abstract</h2><h3>Background</h3> There has been an increasing trend toward pulmonary segmentectomies to treat early-stage lung cancer, small intrapulmonary metastases, and localized benign pathology. A complete preoperative understanding of pulmonary anatomy is essential for accurate surgical planning and case selection. Identifying intersegmental divisions is extremely difficult when performed on computed tomography. For the preoperative planning of segmentectomies, virtual reality (VR) and artificial intelligence could allow 3-dimensional visualization of the complex anatomy of pulmonary segmental divisions, vascular arborization, and bronchial anatomy. This technology can be applied by surgeons preoperatively to gain better insight into a patient's anatomy for planning segmentectomy. <h3>Methods</h3> In this prospective observational pilot study, we aim to assess and demonstrate the technical feasibility and clinical applicability of the first dedicated artificial intelligence-based and immersive 3-dimensional-VR platform (PulmoVR; jointly developed and manufactured by Department of Cardiothoracic Surgery [Erasmus Medical Center, Rotterdam, The Netherlands], MedicalVR [Amsterdam, The Netherlands], EVOCS Medical Image Communication [Fysicon BV, Oss, The Netherlands], and Thirona [Nijmegen, The Netherlands]) for preoperative planning of video-assisted thoracoscopic segmentectomies. <h3>Results</h3> A total of 10 eligible patients for segmentectomy were included in this study after referral through the institutional thoracic oncology multidisciplinary team. PulmoVR was successfully applied as a supplementary imaging tool to perform video-assisted thoracoscopic segmentectomies. In 40% of the cases, the surgical strategy was adjusted due to the 3-dimensional-VR–based evaluation of anatomy. This underlines the potential benefit of additional VR-guided planning of segmentectomy for both surgeon and patient. <h3>Conclusions</h3> Our study demonstrates the successful development and clinical application of the first dedicated artificial intelligence and VR platform for the planning of pulmonary segmentectomy. This is the first study that shows an immersive virtual reality-based application for preoperative planning of segmentectomy to the best of our knowledge." @default.
- W3139117962 created "2021-03-29" @default.
- W3139117962 creator A5003906099 @default.
- W3139117962 creator A5016567527 @default.
- W3139117962 creator A5044391229 @default.
- W3139117962 creator A5051331698 @default.
- W3139117962 creator A5064989058 @default.
- W3139117962 creator A5079366287 @default.
- W3139117962 creator A5088569850 @default.
- W3139117962 date "2021-06-01" @default.
- W3139117962 modified "2023-10-13" @default.
- W3139117962 title "Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies" @default.
- W3139117962 cites W1533361791 @default.
- W3139117962 cites W2017747180 @default.
- W3139117962 cites W2033909072 @default.
- W3139117962 cites W2074460449 @default.
- W3139117962 cites W2117527041 @default.
- W3139117962 cites W2151253065 @default.
- W3139117962 cites W2281843197 @default.
- W3139117962 cites W2339313209 @default.
- W3139117962 cites W2341764562 @default.
- W3139117962 cites W2621400643 @default.
- W3139117962 cites W2781188893 @default.
- W3139117962 cites W2791206210 @default.
- W3139117962 cites W2916416330 @default.
- W3139117962 cites W2973683664 @default.
- W3139117962 cites W3014946114 @default.
- W3139117962 cites W3041776536 @default.
- W3139117962 cites W3108195029 @default.
- W3139117962 cites W3111102929 @default.
- W3139117962 doi "https://doi.org/10.1016/j.xjtc.2021.03.016" @default.
- W3139117962 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8312141" @default.
- W3139117962 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34318279" @default.
- W3139117962 hasPublicationYear "2021" @default.
- W3139117962 type Work @default.
- W3139117962 sameAs 3139117962 @default.
- W3139117962 citedByCount "29" @default.
- W3139117962 countsByYear W31391179622021 @default.
- W3139117962 countsByYear W31391179622022 @default.
- W3139117962 countsByYear W31391179622023 @default.
- W3139117962 crossrefType "journal-article" @default.
- W3139117962 hasAuthorship W3139117962A5003906099 @default.
- W3139117962 hasAuthorship W3139117962A5016567527 @default.
- W3139117962 hasAuthorship W3139117962A5044391229 @default.
- W3139117962 hasAuthorship W3139117962A5051331698 @default.
- W3139117962 hasAuthorship W3139117962A5064989058 @default.
- W3139117962 hasAuthorship W3139117962A5079366287 @default.
- W3139117962 hasAuthorship W3139117962A5088569850 @default.
- W3139117962 hasBestOaLocation W31391179621 @default.
- W3139117962 hasConcept C126838900 @default.
- W3139117962 hasConcept C141071460 @default.
- W3139117962 hasConcept C154945302 @default.
- W3139117962 hasConcept C160022790 @default.
- W3139117962 hasConcept C194969405 @default.
- W3139117962 hasConcept C19527891 @default.
- W3139117962 hasConcept C2779370443 @default.
- W3139117962 hasConcept C41008148 @default.
- W3139117962 hasConcept C71924100 @default.
- W3139117962 hasConceptScore W3139117962C126838900 @default.
- W3139117962 hasConceptScore W3139117962C141071460 @default.
- W3139117962 hasConceptScore W3139117962C154945302 @default.
- W3139117962 hasConceptScore W3139117962C160022790 @default.
- W3139117962 hasConceptScore W3139117962C194969405 @default.
- W3139117962 hasConceptScore W3139117962C19527891 @default.
- W3139117962 hasConceptScore W3139117962C2779370443 @default.
- W3139117962 hasConceptScore W3139117962C41008148 @default.
- W3139117962 hasConceptScore W3139117962C71924100 @default.
- W3139117962 hasFunder F4320321687 @default.
- W3139117962 hasLocation W31391179621 @default.
- W3139117962 hasLocation W31391179622 @default.
- W3139117962 hasOpenAccess W3139117962 @default.
- W3139117962 hasPrimaryLocation W31391179621 @default.
- W3139117962 hasRelatedWork W1986259273 @default.
- W3139117962 hasRelatedWork W2002120878 @default.
- W3139117962 hasRelatedWork W2003938723 @default.
- W3139117962 hasRelatedWork W2047967234 @default.
- W3139117962 hasRelatedWork W206366597 @default.
- W3139117962 hasRelatedWork W2118496982 @default.
- W3139117962 hasRelatedWork W2383868857 @default.
- W3139117962 hasRelatedWork W2439875401 @default.
- W3139117962 hasRelatedWork W3127130789 @default.
- W3139117962 hasRelatedWork W2525756941 @default.
- W3139117962 hasVolume "7" @default.
- W3139117962 isParatext "false" @default.
- W3139117962 isRetracted "false" @default.
- W3139117962 magId "3139117962" @default.
- W3139117962 workType "article" @default.