Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139129542> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3139129542 abstract "Biomedical data analysis has been playing an important role in healthcare provision services. For decades, medical practitioners and researchers have been extracting and analyse biomedical data to derive different health-related information. Recently, there has been a significant rise in the amount of biomedical data collection. This is due to the availability of biomedical devices for the extraction of biomedical data which are more portable, easy to use and affordable, as an effect technology advancement. As the amount of biomedical data produced every day increases, the risk of human making analytical and diagnostic mistakes also increases. For example, there are approximately 40 million diagnostic errors involving medical imaging annually worldwide, hence rise a need for the development of fast, accurate, reliable and automatic means for analysis of biomedical data. Conventional machine learning has been used to assist in the analysis and interpretation of biomedical data automatically, but always limited with the need for feature extraction process to train the built models. To achieve this, three studies have been conducted. Two studies were conducted by using EEG signals and one study by using microscopic images of cancer cells. In the first study with EEG signals, our method managed to interpret motor imaginary activities from a 64 channels EEG device with 99% classification accuracy when all the 64 channels were used and 91.5% classification when the number of channels was selected to eight (8) channels. In a second study which involved steady-state visual evoked potential form of EEG signals, our method achieved an average of 94% classification accuracy by using two channels, skin like EEG sensor. In the third study for authentication of cancer cell lines by using microscopic images, our method managed to attain an average of 0.91 F1-score in the authentication of eight classes of cancer cell lines. Studies reported in this thesis, significantly shows that CNN can play a major role in the development of a computerised way in the analysis of biomedical data. Towards provision of better healthcare by using CNN in analysis of different formats of biomedical data, this thesis has three major contributions, i) introduction of a new method for EEG channels selection towards development of portable EEG sensors for real-life application, and ii) introduction of a method for cancer cell lines authentication in the laboratory environment towards development of anti-cancer drugs, and iii) Introduction of a method for authentication of isogenic cancer cell lines." @default.
- W3139129542 created "2021-03-29" @default.
- W3139129542 creator A5026612259 @default.
- W3139129542 date "2020-03-01" @default.
- W3139129542 modified "2023-09-23" @default.
- W3139129542 title "Application of Deep Neural Network in Healthcare data" @default.
- W3139129542 doi "https://doi.org/10.22024/unikent/01.02.87075" @default.
- W3139129542 hasPublicationYear "2020" @default.
- W3139129542 type Work @default.
- W3139129542 sameAs 3139129542 @default.
- W3139129542 citedByCount "0" @default.
- W3139129542 crossrefType "dissertation" @default.
- W3139129542 hasAuthorship W3139129542A5026612259 @default.
- W3139129542 hasConcept C105795698 @default.
- W3139129542 hasConcept C111919701 @default.
- W3139129542 hasConcept C118552586 @default.
- W3139129542 hasConcept C119857082 @default.
- W3139129542 hasConcept C124101348 @default.
- W3139129542 hasConcept C133462117 @default.
- W3139129542 hasConcept C153180895 @default.
- W3139129542 hasConcept C154945302 @default.
- W3139129542 hasConcept C160735492 @default.
- W3139129542 hasConcept C162324750 @default.
- W3139129542 hasConcept C17744445 @default.
- W3139129542 hasConcept C199539241 @default.
- W3139129542 hasConcept C2522767166 @default.
- W3139129542 hasConcept C2777466982 @default.
- W3139129542 hasConcept C2779473830 @default.
- W3139129542 hasConcept C31601959 @default.
- W3139129542 hasConcept C33923547 @default.
- W3139129542 hasConcept C41008148 @default.
- W3139129542 hasConcept C50522688 @default.
- W3139129542 hasConcept C522805319 @default.
- W3139129542 hasConcept C52622490 @default.
- W3139129542 hasConcept C71924100 @default.
- W3139129542 hasConcept C98045186 @default.
- W3139129542 hasConceptScore W3139129542C105795698 @default.
- W3139129542 hasConceptScore W3139129542C111919701 @default.
- W3139129542 hasConceptScore W3139129542C118552586 @default.
- W3139129542 hasConceptScore W3139129542C119857082 @default.
- W3139129542 hasConceptScore W3139129542C124101348 @default.
- W3139129542 hasConceptScore W3139129542C133462117 @default.
- W3139129542 hasConceptScore W3139129542C153180895 @default.
- W3139129542 hasConceptScore W3139129542C154945302 @default.
- W3139129542 hasConceptScore W3139129542C160735492 @default.
- W3139129542 hasConceptScore W3139129542C162324750 @default.
- W3139129542 hasConceptScore W3139129542C17744445 @default.
- W3139129542 hasConceptScore W3139129542C199539241 @default.
- W3139129542 hasConceptScore W3139129542C2522767166 @default.
- W3139129542 hasConceptScore W3139129542C2777466982 @default.
- W3139129542 hasConceptScore W3139129542C2779473830 @default.
- W3139129542 hasConceptScore W3139129542C31601959 @default.
- W3139129542 hasConceptScore W3139129542C33923547 @default.
- W3139129542 hasConceptScore W3139129542C41008148 @default.
- W3139129542 hasConceptScore W3139129542C50522688 @default.
- W3139129542 hasConceptScore W3139129542C522805319 @default.
- W3139129542 hasConceptScore W3139129542C52622490 @default.
- W3139129542 hasConceptScore W3139129542C71924100 @default.
- W3139129542 hasConceptScore W3139129542C98045186 @default.
- W3139129542 hasLocation W31391295421 @default.
- W3139129542 hasOpenAccess W3139129542 @default.
- W3139129542 hasPrimaryLocation W31391295421 @default.
- W3139129542 hasRelatedWork W2047595924 @default.
- W3139129542 hasRelatedWork W2339479429 @default.
- W3139129542 hasRelatedWork W2465875551 @default.
- W3139129542 hasRelatedWork W2488056629 @default.
- W3139129542 hasRelatedWork W2556350762 @default.
- W3139129542 hasRelatedWork W2577943249 @default.
- W3139129542 hasRelatedWork W2613641796 @default.
- W3139129542 hasRelatedWork W2783802457 @default.
- W3139129542 hasRelatedWork W2895027383 @default.
- W3139129542 hasRelatedWork W2898285526 @default.
- W3139129542 hasRelatedWork W3043218275 @default.
- W3139129542 hasRelatedWork W3048310679 @default.
- W3139129542 hasRelatedWork W3111027997 @default.
- W3139129542 hasRelatedWork W3154884208 @default.
- W3139129542 hasRelatedWork W3178581008 @default.
- W3139129542 hasRelatedWork W3183312474 @default.
- W3139129542 hasRelatedWork W3189423297 @default.
- W3139129542 hasRelatedWork W3193383984 @default.
- W3139129542 hasRelatedWork W48183659 @default.
- W3139129542 hasRelatedWork W1000804947 @default.
- W3139129542 isParatext "false" @default.
- W3139129542 isRetracted "false" @default.
- W3139129542 magId "3139129542" @default.
- W3139129542 workType "dissertation" @default.