Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139188889> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3139188889 endingPage "129" @default.
- W3139188889 startingPage "113" @default.
- W3139188889 abstract "The ground movement is one of the most critical airside operations. It includes two sub-problems: routing and scheduling and serves the purpose of guiding aircraft on the surface of an airport to meet the departure schedule while minimizing overall travel time. To achieve that purpose, ground movement controllers manage the taxi-route assignments and taxi-time estimation for each aircraft in arrival or departure queue. A high-accuracy taxi-time calculation is required to increase the efficiency of airport operations. In this study, we propose a data-driven approach to construct features set and build predictive models for taxi-time prediction for departure flights. The proposed approach can suggest the taxi-route and predict the corresponding taxi-time by analyzing ground movement data. The controller’s operational preferences are extracted and learned by machine learning algorithms for predicting taxi-route and taxi-time of given aircraft. In this approach, we take advantage of taxiing trajectories to learn the controller’s decision, which reflects how the controller had decided the routing for a given situation. Two machine learning models, random forest regression, and linear regression are implemented and show similar performances in estimating the taxi-time. However, since the random forest is an ensemble method that has advantages in handling outliers, performing feature selection, and assessing feature importance, it can provide more stable results and interpretability, for real operations. The predictive model for taxi-time can predict the taxi-out time with high accuracy with given assigned taxi-route. The model can cover the controller’s decision up to 70% in the top-1 and 89% in top-2 recommends. The mean absolute error is less than 2.07 min for all departure flights, and root mean square error is approximately 2.5 min. Moreover, the ± 3-minute error window can cover around 76% of departures, while more than 95% of departures are within the ± 5-minute error window." @default.
- W3139188889 created "2021-03-29" @default.
- W3139188889 creator A5008604294 @default.
- W3139188889 creator A5073218829 @default.
- W3139188889 creator A5079480403 @default.
- W3139188889 creator A5081721894 @default.
- W3139188889 creator A5091693318 @default.
- W3139188889 date "2021-01-01" @default.
- W3139188889 modified "2023-10-16" @default.
- W3139188889 title "A Data-Driven Approach for Taxi-Time Prediction: A Case Study of Singapore Changi Airport" @default.
- W3139188889 cites W1519632299 @default.
- W3139188889 cites W1973470054 @default.
- W3139188889 cites W1990681647 @default.
- W3139188889 cites W2020602155 @default.
- W3139188889 cites W2037957066 @default.
- W3139188889 doi "https://doi.org/10.1007/978-981-33-4669-7_7" @default.
- W3139188889 hasPublicationYear "2021" @default.
- W3139188889 type Work @default.
- W3139188889 sameAs 3139188889 @default.
- W3139188889 citedByCount "2" @default.
- W3139188889 countsByYear W31391888892021 @default.
- W3139188889 countsByYear W31391888892022 @default.
- W3139188889 crossrefType "book-chapter" @default.
- W3139188889 hasAuthorship W3139188889A5008604294 @default.
- W3139188889 hasAuthorship W3139188889A5073218829 @default.
- W3139188889 hasAuthorship W3139188889A5079480403 @default.
- W3139188889 hasAuthorship W3139188889A5081721894 @default.
- W3139188889 hasAuthorship W3139188889A5091693318 @default.
- W3139188889 hasConcept C111919701 @default.
- W3139188889 hasConcept C124101348 @default.
- W3139188889 hasConcept C127413603 @default.
- W3139188889 hasConcept C154945302 @default.
- W3139188889 hasConcept C169258074 @default.
- W3139188889 hasConcept C203479927 @default.
- W3139188889 hasConcept C206729178 @default.
- W3139188889 hasConcept C21547014 @default.
- W3139188889 hasConcept C2781067378 @default.
- W3139188889 hasConcept C41008148 @default.
- W3139188889 hasConcept C42475967 @default.
- W3139188889 hasConcept C6557445 @default.
- W3139188889 hasConcept C68387754 @default.
- W3139188889 hasConcept C86803240 @default.
- W3139188889 hasConceptScore W3139188889C111919701 @default.
- W3139188889 hasConceptScore W3139188889C124101348 @default.
- W3139188889 hasConceptScore W3139188889C127413603 @default.
- W3139188889 hasConceptScore W3139188889C154945302 @default.
- W3139188889 hasConceptScore W3139188889C169258074 @default.
- W3139188889 hasConceptScore W3139188889C203479927 @default.
- W3139188889 hasConceptScore W3139188889C206729178 @default.
- W3139188889 hasConceptScore W3139188889C21547014 @default.
- W3139188889 hasConceptScore W3139188889C2781067378 @default.
- W3139188889 hasConceptScore W3139188889C41008148 @default.
- W3139188889 hasConceptScore W3139188889C42475967 @default.
- W3139188889 hasConceptScore W3139188889C6557445 @default.
- W3139188889 hasConceptScore W3139188889C68387754 @default.
- W3139188889 hasConceptScore W3139188889C86803240 @default.
- W3139188889 hasLocation W31391888891 @default.
- W3139188889 hasOpenAccess W3139188889 @default.
- W3139188889 hasPrimaryLocation W31391888891 @default.
- W3139188889 hasRelatedWork W136212090 @default.
- W3139188889 hasRelatedWork W1565085652 @default.
- W3139188889 hasRelatedWork W2011541570 @default.
- W3139188889 hasRelatedWork W2083767797 @default.
- W3139188889 hasRelatedWork W2160298501 @default.
- W3139188889 hasRelatedWork W2568276500 @default.
- W3139188889 hasRelatedWork W2625545162 @default.
- W3139188889 hasRelatedWork W2765703277 @default.
- W3139188889 hasRelatedWork W3208985699 @default.
- W3139188889 hasRelatedWork W4380905089 @default.
- W3139188889 isParatext "false" @default.
- W3139188889 isRetracted "false" @default.
- W3139188889 magId "3139188889" @default.
- W3139188889 workType "book-chapter" @default.