Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139228162> ?p ?o ?g. }
- W3139228162 endingPage "101956" @default.
- W3139228162 startingPage "101956" @default.
- W3139228162 abstract "Despite its potential to overcome the design and processing barriers of traditional subtractive and formative manufacturing techniques, the use of laser powder bed fusion (LPBF) metal additive manufacturing is currently limited due to its tendency to create flaws. A multitude of LPBF-related flaws, such as part-level deformation, cracking, and porosity are linked to the spatiotemporal temperature distribution in the part during the process. The temperature distribution, also called the thermal history, is a function of several factors encompassing material properties, part geometry and orientation, processing parameters, placement of supports, among others. These broad range of factors are difficult and expensive to optimize through empirical testing alone. Consequently, fast and accurate models to predict the thermal history are valuable for mitigating flaw formation in LPBF-processed parts. In our prior works, we developed a graph theory-based approach for predicting the temperature distribution in LPBF parts. This mesh-free approach was compared with both non-proprietary and commercial finite element packages, and the thermal history predictions were experimentally validated with in-situ infrared thermal imaging data. It was found that the graph theory-derived thermal history predictions converged within 30–50% of the time of non-proprietary finite element analysis for a similar level of prediction error. However, these prior efforts were based on small prismatic and cylinder-shaped LPBF parts. In this paper, our objective was to scale the graph theory approach to predict the thermal history of large volume, complex geometry LPBF parts. To realize this objective, we developed and applied three computational strategies to predict the thermal history of a stainless steel (SAE 316L) impeller having outside diameter 155 mm and vertical height 35 mm (700 layers). The impeller was processed on a Renishaw AM250 LPBF system and required 16 h to complete. During the process, in-situ layer-by-layer steady state surface temperature measurements for the impeller were obtained using a calibrated longwave infrared thermal camera. As an example of the outcome, on implementing one of the three strategies reported in this work, which did not reduce or simplify the part geometry, the thermal history of the impeller was predicted with approximate mean absolute error of 6% (standard deviation 0.8%) and root mean square error 23 K (standard deviation 3.7 K). Moreover, the thermal history was simulated within 40 min using desktop computing, which is considerably less than the 16 h required to build the impeller part. Furthermore, the graph theory thermal history predictions were compared with a proprietary LPBF thermal modeling software and non-proprietary finite element simulation. For a similar level of root mean square error (28 K), the graph theory approach converged in 17 min, vs. 4.5 h for non-proprietary finite element analysis." @default.
- W3139228162 created "2021-03-29" @default.
- W3139228162 creator A5000087415 @default.
- W3139228162 creator A5009553994 @default.
- W3139228162 creator A5015672774 @default.
- W3139228162 creator A5033425543 @default.
- W3139228162 creator A5037009496 @default.
- W3139228162 creator A5045182089 @default.
- W3139228162 creator A5059712194 @default.
- W3139228162 creator A5067087134 @default.
- W3139228162 date "2021-05-01" @default.
- W3139228162 modified "2023-10-14" @default.
- W3139228162 title "Thermal modeling in metal additive manufacturing using graph theory – Application to laser powder bed fusion of a large volume impeller" @default.
- W3139228162 cites W1853026477 @default.
- W3139228162 cites W1990033178 @default.
- W3139228162 cites W1990318070 @default.
- W3139228162 cites W2024092653 @default.
- W3139228162 cites W2041603365 @default.
- W3139228162 cites W2051998685 @default.
- W3139228162 cites W2061214064 @default.
- W3139228162 cites W2067366733 @default.
- W3139228162 cites W2079191090 @default.
- W3139228162 cites W2091132864 @default.
- W3139228162 cites W2188211447 @default.
- W3139228162 cites W2228372699 @default.
- W3139228162 cites W2279780730 @default.
- W3139228162 cites W2311258216 @default.
- W3139228162 cites W2324464036 @default.
- W3139228162 cites W2344816559 @default.
- W3139228162 cites W2434196658 @default.
- W3139228162 cites W2462301626 @default.
- W3139228162 cites W2622805139 @default.
- W3139228162 cites W2732304117 @default.
- W3139228162 cites W2762367303 @default.
- W3139228162 cites W2765097946 @default.
- W3139228162 cites W2788498221 @default.
- W3139228162 cites W2800291091 @default.
- W3139228162 cites W2884691768 @default.
- W3139228162 cites W2889477392 @default.
- W3139228162 cites W2943318449 @default.
- W3139228162 cites W2964828436 @default.
- W3139228162 cites W2966410959 @default.
- W3139228162 cites W2984807752 @default.
- W3139228162 cites W2990451840 @default.
- W3139228162 cites W2991910174 @default.
- W3139228162 cites W3001651975 @default.
- W3139228162 cites W3013022504 @default.
- W3139228162 cites W3023846942 @default.
- W3139228162 cites W3034823912 @default.
- W3139228162 cites W3087755210 @default.
- W3139228162 cites W647171483 @default.
- W3139228162 doi "https://doi.org/10.1016/j.addma.2021.101956" @default.
- W3139228162 hasPublicationYear "2021" @default.
- W3139228162 type Work @default.
- W3139228162 sameAs 3139228162 @default.
- W3139228162 citedByCount "13" @default.
- W3139228162 countsByYear W31392281622021 @default.
- W3139228162 countsByYear W31392281622022 @default.
- W3139228162 countsByYear W31392281622023 @default.
- W3139228162 crossrefType "journal-article" @default.
- W3139228162 hasAuthorship W3139228162A5000087415 @default.
- W3139228162 hasAuthorship W3139228162A5009553994 @default.
- W3139228162 hasAuthorship W3139228162A5015672774 @default.
- W3139228162 hasAuthorship W3139228162A5033425543 @default.
- W3139228162 hasAuthorship W3139228162A5037009496 @default.
- W3139228162 hasAuthorship W3139228162A5045182089 @default.
- W3139228162 hasAuthorship W3139228162A5059712194 @default.
- W3139228162 hasAuthorship W3139228162A5067087134 @default.
- W3139228162 hasBestOaLocation W31392281621 @default.
- W3139228162 hasConcept C121332964 @default.
- W3139228162 hasConcept C127413603 @default.
- W3139228162 hasConcept C132525143 @default.
- W3139228162 hasConcept C135628077 @default.
- W3139228162 hasConcept C138885662 @default.
- W3139228162 hasConcept C153005164 @default.
- W3139228162 hasConcept C153294291 @default.
- W3139228162 hasConcept C158525013 @default.
- W3139228162 hasConcept C191897082 @default.
- W3139228162 hasConcept C192562407 @default.
- W3139228162 hasConcept C204530211 @default.
- W3139228162 hasConcept C41008148 @default.
- W3139228162 hasConcept C41895202 @default.
- W3139228162 hasConcept C523214423 @default.
- W3139228162 hasConcept C66938386 @default.
- W3139228162 hasConcept C78519656 @default.
- W3139228162 hasConcept C80444323 @default.
- W3139228162 hasConceptScore W3139228162C121332964 @default.
- W3139228162 hasConceptScore W3139228162C127413603 @default.
- W3139228162 hasConceptScore W3139228162C132525143 @default.
- W3139228162 hasConceptScore W3139228162C135628077 @default.
- W3139228162 hasConceptScore W3139228162C138885662 @default.
- W3139228162 hasConceptScore W3139228162C153005164 @default.
- W3139228162 hasConceptScore W3139228162C153294291 @default.
- W3139228162 hasConceptScore W3139228162C158525013 @default.
- W3139228162 hasConceptScore W3139228162C191897082 @default.
- W3139228162 hasConceptScore W3139228162C192562407 @default.
- W3139228162 hasConceptScore W3139228162C204530211 @default.
- W3139228162 hasConceptScore W3139228162C41008148 @default.