Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139286807> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W3139286807 abstract "In this paper, we offer a machine learning classifier model, later considered as MLCM, for classifying objects such as road signs and vehicles. Showing the influence of vocabulary size on accuracy of SVM using SURF. Based on SURF method used bag-of-words model as feature extractor. Due to its simplifying representation, it accelerates the first stage of our MLCM. We tested and analyzed accuracy of Support Vector Machines, including Linear, Quadratic and Medium Gaussian SVM as flowed step model and automatically use best result for further estimation. Furthermore, we provide a brief introduction of applied methods and experimental results analysis. MLCM introduces combination of SURF method and several SVMs as well as optimized SVM. This technique shows good performance with minimum failures. Thereafter, it will be implemented for real-time video sequences. The achieved goal can be implemented in the use of self-driving of industrial machines with a safe speed." @default.
- W3139286807 created "2021-03-29" @default.
- W3139286807 creator A5008242657 @default.
- W3139286807 creator A5072240057 @default.
- W3139286807 date "2020-12-04" @default.
- W3139286807 modified "2023-09-25" @default.
- W3139286807 title "Traffic Sign and Vehicle Classification based on Machine Learning" @default.
- W3139286807 cites W2153567777 @default.
- W3139286807 cites W2177756006 @default.
- W3139286807 doi "https://doi.org/10.1145/3442705.3442711" @default.
- W3139286807 hasPublicationYear "2020" @default.
- W3139286807 type Work @default.
- W3139286807 sameAs 3139286807 @default.
- W3139286807 citedByCount "0" @default.
- W3139286807 crossrefType "proceedings-article" @default.
- W3139286807 hasAuthorship W3139286807A5008242657 @default.
- W3139286807 hasAuthorship W3139286807A5072240057 @default.
- W3139286807 hasConcept C119857082 @default.
- W3139286807 hasConcept C134306372 @default.
- W3139286807 hasConcept C139676723 @default.
- W3139286807 hasConcept C154945302 @default.
- W3139286807 hasConcept C2983860417 @default.
- W3139286807 hasConcept C33923547 @default.
- W3139286807 hasConcept C41008148 @default.
- W3139286807 hasConcept C6528762 @default.
- W3139286807 hasConceptScore W3139286807C119857082 @default.
- W3139286807 hasConceptScore W3139286807C134306372 @default.
- W3139286807 hasConceptScore W3139286807C139676723 @default.
- W3139286807 hasConceptScore W3139286807C154945302 @default.
- W3139286807 hasConceptScore W3139286807C2983860417 @default.
- W3139286807 hasConceptScore W3139286807C33923547 @default.
- W3139286807 hasConceptScore W3139286807C41008148 @default.
- W3139286807 hasConceptScore W3139286807C6528762 @default.
- W3139286807 hasLocation W31392868071 @default.
- W3139286807 hasOpenAccess W3139286807 @default.
- W3139286807 hasPrimaryLocation W31392868071 @default.
- W3139286807 hasRelatedWork W2024423485 @default.
- W3139286807 hasRelatedWork W2079555348 @default.
- W3139286807 hasRelatedWork W2104761490 @default.
- W3139286807 hasRelatedWork W2147662716 @default.
- W3139286807 hasRelatedWork W2394601593 @default.
- W3139286807 hasRelatedWork W2510892248 @default.
- W3139286807 hasRelatedWork W2899819381 @default.
- W3139286807 hasRelatedWork W3128164723 @default.
- W3139286807 hasRelatedWork W4224216576 @default.
- W3139286807 hasRelatedWork W647847915 @default.
- W3139286807 isParatext "false" @default.
- W3139286807 isRetracted "false" @default.
- W3139286807 magId "3139286807" @default.
- W3139286807 workType "article" @default.