Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139311036> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3139311036 abstract "Abstract Adequate implementation of probabilistic dynamic modelling workflow allows to explore full range of solutions and helps in better decision making. Probabilistic modelling workflows comprise of a series of steps. This paper closely scrutinizes three key steps of a probabilistic workflow – sensitivity analysis, experimental design and model selection for decision making. There are different methods and processes practiced in the industry for these key steps. A comparative study of commonly available and practiced techniques is performed, and their pros and cons are demonstrated using open available Brugge field model. In the first part the commonly used tornado/one variable at a time (OVAT) is compared against other global sensitivity techniques suchas ANOVA (Analysis of Variance) and multi-regression analysis. The difference among the techniques is explained and its application is demonstrated through field example. It is shown that the global sensitivity analysis is more robust and provides better results but at a higher computational cost. Next experimental design techniques are reviewed with focus on the optimum experimental design. Key concepts of experimental design such as aliasing, resolution and confounding pattern are explained. It is shown that an appropriate experimental design can be used to avoid confounding of key parameters. The confounding patterns have been demonstrated for factorial design experiments. The concept is shown with the example of Brugge model. Model selection after history matching process is a challenging task. In the last part of the paper two different multi-dimensional visualization techniques PCA (Principal Component Analysis) and t-SNE (t-Stochastic Neighbour Embedding) are explained and utilized to visualize the ensemble of history matched models. These techniques in combination with k-mean clustering has been used to select representative models for prediction. The overall uncertainty captured by the representative models is compared to the full ensemble of history matched models. It is shown that clustering along with visualization provide a robust framework for model selection. The paper is intended to provide a good understanding of some of the key steps of the probabilistic modelling workflow. The technical concept behind each technique is briefly described but the main focus is on the practical aspects and implemtation of these techniques." @default.
- W3139311036 created "2021-03-29" @default.
- W3139311036 creator A5020335412 @default.
- W3139311036 creator A5058521833 @default.
- W3139311036 date "2021-03-16" @default.
- W3139311036 modified "2023-09-27" @default.
- W3139311036 title "Easy Steps in Probabilistic Dynamic Modelling in FDP" @default.
- W3139311036 cites W1480376833 @default.
- W3139311036 cites W2000792207 @default.
- W3139311036 cites W2058488613 @default.
- W3139311036 cites W2085274952 @default.
- W3139311036 cites W2949643603 @default.
- W3139311036 cites W417266313 @default.
- W3139311036 doi "https://doi.org/10.2523/iptc-21323-ms" @default.
- W3139311036 hasPublicationYear "2021" @default.
- W3139311036 type Work @default.
- W3139311036 sameAs 3139311036 @default.
- W3139311036 citedByCount "0" @default.
- W3139311036 crossrefType "proceedings-article" @default.
- W3139311036 hasAuthorship W3139311036A5020335412 @default.
- W3139311036 hasAuthorship W3139311036A5058521833 @default.
- W3139311036 hasConcept C105795698 @default.
- W3139311036 hasConcept C119857082 @default.
- W3139311036 hasConcept C124101348 @default.
- W3139311036 hasConcept C127413603 @default.
- W3139311036 hasConcept C154945302 @default.
- W3139311036 hasConcept C177212765 @default.
- W3139311036 hasConcept C21200559 @default.
- W3139311036 hasConcept C24326235 @default.
- W3139311036 hasConcept C26517878 @default.
- W3139311036 hasConcept C33923547 @default.
- W3139311036 hasConcept C34559072 @default.
- W3139311036 hasConcept C38652104 @default.
- W3139311036 hasConcept C41008148 @default.
- W3139311036 hasConcept C49937458 @default.
- W3139311036 hasConcept C77088390 @default.
- W3139311036 hasConceptScore W3139311036C105795698 @default.
- W3139311036 hasConceptScore W3139311036C119857082 @default.
- W3139311036 hasConceptScore W3139311036C124101348 @default.
- W3139311036 hasConceptScore W3139311036C127413603 @default.
- W3139311036 hasConceptScore W3139311036C154945302 @default.
- W3139311036 hasConceptScore W3139311036C177212765 @default.
- W3139311036 hasConceptScore W3139311036C21200559 @default.
- W3139311036 hasConceptScore W3139311036C24326235 @default.
- W3139311036 hasConceptScore W3139311036C26517878 @default.
- W3139311036 hasConceptScore W3139311036C33923547 @default.
- W3139311036 hasConceptScore W3139311036C34559072 @default.
- W3139311036 hasConceptScore W3139311036C38652104 @default.
- W3139311036 hasConceptScore W3139311036C41008148 @default.
- W3139311036 hasConceptScore W3139311036C49937458 @default.
- W3139311036 hasConceptScore W3139311036C77088390 @default.
- W3139311036 hasLocation W31393110361 @default.
- W3139311036 hasOpenAccess W3139311036 @default.
- W3139311036 hasPrimaryLocation W31393110361 @default.
- W3139311036 hasRelatedWork W1575659177 @default.
- W3139311036 hasRelatedWork W1781415233 @default.
- W3139311036 hasRelatedWork W2026424905 @default.
- W3139311036 hasRelatedWork W2081035100 @default.
- W3139311036 hasRelatedWork W2327228951 @default.
- W3139311036 hasRelatedWork W2546704476 @default.
- W3139311036 hasRelatedWork W2884654900 @default.
- W3139311036 hasRelatedWork W2961085424 @default.
- W3139311036 hasRelatedWork W4306674287 @default.
- W3139311036 hasRelatedWork W4224009465 @default.
- W3139311036 isParatext "false" @default.
- W3139311036 isRetracted "false" @default.
- W3139311036 magId "3139311036" @default.
- W3139311036 workType "article" @default.