Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139339750> ?p ?o ?g. }
- W3139339750 endingPage "3521" @default.
- W3139339750 startingPage "3512" @default.
- W3139339750 abstract "Crowd counting aims to count the number of people in crowded scenes, which is important to the security systems, traffic control and so on. The existing methods typically using local features cannot properly handle the perspective distortion and the varying scales in congested scene images, and henceforth perform wrong people counting. To alleviate this issue, this study proposes a multi-scale residual feature-aware network (MSR-FAN) that combines multi-scale features using multiple receptive field sizes and learns the feature-aware information on each image. The MSR-FAN is trained end-to-end to generate high-quality density map and evaluate the crowd number. The method consists of three parts. To handle the perspective changes problem, the first part, the direction-based feature-enhanced network, is designed to encode the perspective information in four directions based on the initial image feature. The second part, the proposed multi-scale residual block module, gets the global information to handle the represent the regional feature better. This module explores features of different scales as well as reinforce the global feature. The third part, the feature-aware block, is designed to extract the feature hidden in the different channels. Experiment results based on benchmark datasets show that the proposed approach outperforms the existing state-of-the-art methods." @default.
- W3139339750 created "2021-03-29" @default.
- W3139339750 creator A5012322206 @default.
- W3139339750 creator A5041479215 @default.
- W3139339750 creator A5046155722 @default.
- W3139339750 creator A5077466803 @default.
- W3139339750 creator A5078114143 @default.
- W3139339750 creator A5086555836 @default.
- W3139339750 date "2021-03-18" @default.
- W3139339750 modified "2023-10-04" @default.
- W3139339750 title "MSR‐FAN: Multi‐scale residual feature‐aware network for crowd counting" @default.
- W3139339750 cites W1976959044 @default.
- W3139339750 cites W1977470347 @default.
- W3139339750 cites W1995444699 @default.
- W3139339750 cites W2013039598 @default.
- W3139339750 cites W2056834257 @default.
- W3139339750 cites W2072232009 @default.
- W3139339750 cites W2083342768 @default.
- W3139339750 cites W2096246546 @default.
- W3139339750 cites W2120815373 @default.
- W3139339750 cites W2130751540 @default.
- W3139339750 cites W2138948290 @default.
- W3139339750 cites W2142037471 @default.
- W3139339750 cites W2394843433 @default.
- W3139339750 cites W2460996549 @default.
- W3139339750 cites W2463631526 @default.
- W3139339750 cites W2586716774 @default.
- W3139339750 cites W2745597836 @default.
- W3139339750 cites W2781110478 @default.
- W3139339750 cites W2798489385 @default.
- W3139339750 cites W2891528343 @default.
- W3139339750 cites W2945574898 @default.
- W3139339750 cites W2946416091 @default.
- W3139339750 cites W2961566087 @default.
- W3139339750 cites W2964209782 @default.
- W3139339750 cites W2967069910 @default.
- W3139339750 cites W2982007926 @default.
- W3139339750 cites W2982014038 @default.
- W3139339750 cites W2982512081 @default.
- W3139339750 cites W2991203386 @default.
- W3139339750 cites W2996703886 @default.
- W3139339750 cites W3004672782 @default.
- W3139339750 cites W3007175960 @default.
- W3139339750 cites W3010861133 @default.
- W3139339750 cites W3014114191 @default.
- W3139339750 cites W3015309989 @default.
- W3139339750 cites W3027175416 @default.
- W3139339750 cites W3035307763 @default.
- W3139339750 cites W3082125592 @default.
- W3139339750 cites W3093425067 @default.
- W3139339750 cites W3106732900 @default.
- W3139339750 cites W3109157205 @default.
- W3139339750 doi "https://doi.org/10.1049/ipr2.12175" @default.
- W3139339750 hasPublicationYear "2021" @default.
- W3139339750 type Work @default.
- W3139339750 sameAs 3139339750 @default.
- W3139339750 citedByCount "4" @default.
- W3139339750 countsByYear W31393397502021 @default.
- W3139339750 countsByYear W31393397502022 @default.
- W3139339750 countsByYear W31393397502023 @default.
- W3139339750 crossrefType "journal-article" @default.
- W3139339750 hasAuthorship W3139339750A5012322206 @default.
- W3139339750 hasAuthorship W3139339750A5041479215 @default.
- W3139339750 hasAuthorship W3139339750A5046155722 @default.
- W3139339750 hasAuthorship W3139339750A5077466803 @default.
- W3139339750 hasAuthorship W3139339750A5078114143 @default.
- W3139339750 hasAuthorship W3139339750A5086555836 @default.
- W3139339750 hasBestOaLocation W31393397501 @default.
- W3139339750 hasConcept C11413529 @default.
- W3139339750 hasConcept C115961682 @default.
- W3139339750 hasConcept C121332964 @default.
- W3139339750 hasConcept C124101348 @default.
- W3139339750 hasConcept C126780896 @default.
- W3139339750 hasConcept C12713177 @default.
- W3139339750 hasConcept C13280743 @default.
- W3139339750 hasConcept C138885662 @default.
- W3139339750 hasConcept C153180895 @default.
- W3139339750 hasConcept C154945302 @default.
- W3139339750 hasConcept C155512373 @default.
- W3139339750 hasConcept C185798385 @default.
- W3139339750 hasConcept C194257627 @default.
- W3139339750 hasConcept C205649164 @default.
- W3139339750 hasConcept C2524010 @default.
- W3139339750 hasConcept C2776257435 @default.
- W3139339750 hasConcept C2776401178 @default.
- W3139339750 hasConcept C2777210771 @default.
- W3139339750 hasConcept C2778755073 @default.
- W3139339750 hasConcept C2779989122 @default.
- W3139339750 hasConcept C31258907 @default.
- W3139339750 hasConcept C31972630 @default.
- W3139339750 hasConcept C33923547 @default.
- W3139339750 hasConcept C41008148 @default.
- W3139339750 hasConcept C41895202 @default.
- W3139339750 hasConcept C52622490 @default.
- W3139339750 hasConcept C62520636 @default.
- W3139339750 hasConceptScore W3139339750C11413529 @default.
- W3139339750 hasConceptScore W3139339750C115961682 @default.
- W3139339750 hasConceptScore W3139339750C121332964 @default.