Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139512791> ?p ?o ?g. }
- W3139512791 endingPage "301" @default.
- W3139512791 startingPage "288" @default.
- W3139512791 abstract "Neuromorphic computing systems are embracing memristors to implement high density and low power synaptic storage as crossbar arrays in hardware. These systems are energy efficient in executing Spiking Neural Networks (SNNs). We observe that long bitlines and wordlines in a memristive crossbar are a major source of parasitic voltage drops, which create current asymmetry. Through circuit simulations, we show the significant endurance variation that results from this asymmetry. Therefore, if the critical memristors (ones with lower endurance) are overutilized, they may lead to a reduction of the crossbar's lifetime. We propose eSpine, a novel technique to improve lifetime by incorporating the endurance variation within each crossbar in mapping machine learning workloads, ensuring that synapses with higher activation are always implemented on memristors with higher endurance, and vice versa. eSpine works in two steps. First, it uses the Kernighan-Lin Graph Partitioning algorithm to partition a workload into clusters of neurons and synapses, where each cluster can fit in a crossbar. Second, it uses an instance of Particle Swarm Optimization (PSO) to map clusters to tiles, where the placement of synapses of a cluster to memristors of a crossbar is performed by analyzing their activation within the workload. We evaluate eSpine for a state-of-the-art neuromorphic hardware model with phase-change memory (PCM)-based memristors. Using 10 SNN workloads, we demonstrate a significant improvement in the effective lifetime." @default.
- W3139512791 created "2021-03-29" @default.
- W3139512791 creator A5007817952 @default.
- W3139512791 creator A5007957626 @default.
- W3139512791 creator A5007990215 @default.
- W3139512791 creator A5011585098 @default.
- W3139512791 creator A5033235745 @default.
- W3139512791 creator A5052267211 @default.
- W3139512791 creator A5059098291 @default.
- W3139512791 date "2022-02-01" @default.
- W3139512791 modified "2023-10-05" @default.
- W3139512791 title "Endurance-Aware Mapping of Spiking Neural Networks to Neuromorphic Hardware" @default.
- W3139512791 cites W101771737 @default.
- W3139512791 cites W1498101568 @default.
- W3139512791 cites W1515091640 @default.
- W3139512791 cites W1570411240 @default.
- W3139512791 cites W1982381157 @default.
- W3139512791 cites W1999907890 @default.
- W3139512791 cites W2018255982 @default.
- W3139512791 cites W2021383442 @default.
- W3139512791 cites W2030701254 @default.
- W3139512791 cites W2036382651 @default.
- W3139512791 cites W2040687898 @default.
- W3139512791 cites W2051220390 @default.
- W3139512791 cites W2060032564 @default.
- W3139512791 cites W2061367020 @default.
- W3139512791 cites W2105407012 @default.
- W3139512791 cites W2110395205 @default.
- W3139512791 cites W2112753327 @default.
- W3139512791 cites W2152195021 @default.
- W3139512791 cites W2161455936 @default.
- W3139512791 cites W2168558032 @default.
- W3139512791 cites W2338228311 @default.
- W3139512791 cites W2440264212 @default.
- W3139512791 cites W2560615381 @default.
- W3139512791 cites W2729455382 @default.
- W3139512791 cites W2744630688 @default.
- W3139512791 cites W2749445606 @default.
- W3139512791 cites W2749476078 @default.
- W3139512791 cites W2783525259 @default.
- W3139512791 cites W2787453651 @default.
- W3139512791 cites W2790862368 @default.
- W3139512791 cites W2883182488 @default.
- W3139512791 cites W2892615835 @default.
- W3139512791 cites W2896127412 @default.
- W3139512791 cites W2896157811 @default.
- W3139512791 cites W2914529066 @default.
- W3139512791 cites W2920718914 @default.
- W3139512791 cites W2944895246 @default.
- W3139512791 cites W2944996566 @default.
- W3139512791 cites W2945174502 @default.
- W3139512791 cites W2946591837 @default.
- W3139512791 cites W2963588827 @default.
- W3139512791 cites W2964166416 @default.
- W3139512791 cites W2971963594 @default.
- W3139512791 cites W2974374491 @default.
- W3139512791 cites W2979865208 @default.
- W3139512791 cites W2984215176 @default.
- W3139512791 cites W2989683650 @default.
- W3139512791 cites W3005999147 @default.
- W3139512791 cites W3011005436 @default.
- W3139512791 cites W3014143069 @default.
- W3139512791 cites W3016048022 @default.
- W3139512791 cites W3018877817 @default.
- W3139512791 cites W3038698523 @default.
- W3139512791 cites W3045879661 @default.
- W3139512791 cites W3088599523 @default.
- W3139512791 cites W3093513300 @default.
- W3139512791 cites W3099890399 @default.
- W3139512791 cites W3101275799 @default.
- W3139512791 cites W3106114504 @default.
- W3139512791 cites W3122825408 @default.
- W3139512791 cites W3123782736 @default.
- W3139512791 doi "https://doi.org/10.1109/tpds.2021.3065591" @default.
- W3139512791 hasPublicationYear "2022" @default.
- W3139512791 type Work @default.
- W3139512791 sameAs 3139512791 @default.
- W3139512791 citedByCount "22" @default.
- W3139512791 countsByYear W31395127912021 @default.
- W3139512791 countsByYear W31395127912022 @default.
- W3139512791 countsByYear W31395127912023 @default.
- W3139512791 crossrefType "journal-article" @default.
- W3139512791 hasAuthorship W3139512791A5007817952 @default.
- W3139512791 hasAuthorship W3139512791A5007957626 @default.
- W3139512791 hasAuthorship W3139512791A5007990215 @default.
- W3139512791 hasAuthorship W3139512791A5011585098 @default.
- W3139512791 hasAuthorship W3139512791A5033235745 @default.
- W3139512791 hasAuthorship W3139512791A5052267211 @default.
- W3139512791 hasAuthorship W3139512791A5059098291 @default.
- W3139512791 hasBestOaLocation W31395127912 @default.
- W3139512791 hasConcept C111919701 @default.
- W3139512791 hasConcept C11731999 @default.
- W3139512791 hasConcept C118524514 @default.
- W3139512791 hasConcept C127413603 @default.
- W3139512791 hasConcept C150072547 @default.
- W3139512791 hasConcept C151927369 @default.
- W3139512791 hasConcept C154945302 @default.
- W3139512791 hasConcept C173608175 @default.