Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139708045> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3139708045 endingPage "102583" @default.
- W3139708045 startingPage "102583" @default.
- W3139708045 abstract "Due to the unforeseen turn of events, our world has undergone another global pandemic from a highly contagious novel coronavirus named COVID-19. The novel virus inflames the lungs similarly to Pneumonia, making it challenging to diagnose. Currently, the common standard to diagnose the virus's presence from an individual is using a molecular real-time Reverse-Transcription Polymerase Chain Reaction (rRT-PCR) test from fluids acquired through nasal swabs. Such a test is difficult to acquire in most underdeveloped countries with a few experts that can perform the test. As a substitute, the widely available Chest X-Ray (CXR) became an alternative to rule out the virus. However, such a method does not come easy as the virus still possesses unknown characteristics that even experienced radiologists and other medical experts find difficult to diagnose through CXRs. Several studies have recently used computer-aided methods to automate and improve such diagnosis of CXRs through Artificial Intelligence (AI) based on computer vision and Deep Convolutional Neural Networks (DCNN), which some require heavy processing costs and other tedious methods to produce. Therefore, this work proposed the Fused-DenseNet-Tiny, a lightweight DCNN model based on a densely connected neural network (DenseNet) truncated and concatenated. The model trained to learn CXR features based on transfer learning, partial layer freezing, and feature fusion. Upon evaluation, the proposed model achieved a remarkable 97.99 % accuracy, with only 1.2 million parameters and a shorter end-to-end structure. It has also shown better performance than some existing studies and other massive state-of-the-art models that diagnosed COVID-19 from CXRs." @default.
- W3139708045 created "2021-04-13" @default.
- W3139708045 creator A5037954007 @default.
- W3139708045 date "2021-07-01" @default.
- W3139708045 modified "2023-10-03" @default.
- W3139708045 title "Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion" @default.
- W3139708045 cites W1494052777 @default.
- W3139708045 cites W2068258779 @default.
- W3139708045 cites W2330219538 @default.
- W3139708045 cites W2395579298 @default.
- W3139708045 cites W2589074029 @default.
- W3139708045 cites W2767060828 @default.
- W3139708045 cites W2965011261 @default.
- W3139708045 cites W2999409984 @default.
- W3139708045 cites W3002669799 @default.
- W3139708045 cites W3010717703 @default.
- W3139708045 cites W3011506461 @default.
- W3139708045 cites W3017855299 @default.
- W3139708045 cites W3021001507 @default.
- W3139708045 cites W3022133958 @default.
- W3139708045 cites W3025693254 @default.
- W3139708045 cites W3033616466 @default.
- W3139708045 cites W3083753334 @default.
- W3139708045 cites W3084024556 @default.
- W3139708045 cites W3087969957 @default.
- W3139708045 cites W3092157780 @default.
- W3139708045 cites W3092530991 @default.
- W3139708045 cites W3095544488 @default.
- W3139708045 cites W3105081694 @default.
- W3139708045 cites W3108492058 @default.
- W3139708045 cites W3116326107 @default.
- W3139708045 doi "https://doi.org/10.1016/j.bspc.2021.102583" @default.
- W3139708045 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8015405" @default.
- W3139708045 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33828610" @default.
- W3139708045 hasPublicationYear "2021" @default.
- W3139708045 type Work @default.
- W3139708045 sameAs 3139708045 @default.
- W3139708045 citedByCount "28" @default.
- W3139708045 countsByYear W31397080452021 @default.
- W3139708045 countsByYear W31397080452022 @default.
- W3139708045 countsByYear W31397080452023 @default.
- W3139708045 crossrefType "journal-article" @default.
- W3139708045 hasAuthorship W3139708045A5037954007 @default.
- W3139708045 hasBestOaLocation W31397080451 @default.
- W3139708045 hasConcept C108583219 @default.
- W3139708045 hasConcept C119857082 @default.
- W3139708045 hasConcept C138885662 @default.
- W3139708045 hasConcept C142724271 @default.
- W3139708045 hasConcept C150899416 @default.
- W3139708045 hasConcept C153180895 @default.
- W3139708045 hasConcept C154945302 @default.
- W3139708045 hasConcept C2776401178 @default.
- W3139708045 hasConcept C2779134260 @default.
- W3139708045 hasConcept C3008058167 @default.
- W3139708045 hasConcept C41008148 @default.
- W3139708045 hasConcept C41895202 @default.
- W3139708045 hasConcept C50644808 @default.
- W3139708045 hasConcept C524204448 @default.
- W3139708045 hasConcept C71924100 @default.
- W3139708045 hasConcept C81363708 @default.
- W3139708045 hasConceptScore W3139708045C108583219 @default.
- W3139708045 hasConceptScore W3139708045C119857082 @default.
- W3139708045 hasConceptScore W3139708045C138885662 @default.
- W3139708045 hasConceptScore W3139708045C142724271 @default.
- W3139708045 hasConceptScore W3139708045C150899416 @default.
- W3139708045 hasConceptScore W3139708045C153180895 @default.
- W3139708045 hasConceptScore W3139708045C154945302 @default.
- W3139708045 hasConceptScore W3139708045C2776401178 @default.
- W3139708045 hasConceptScore W3139708045C2779134260 @default.
- W3139708045 hasConceptScore W3139708045C3008058167 @default.
- W3139708045 hasConceptScore W3139708045C41008148 @default.
- W3139708045 hasConceptScore W3139708045C41895202 @default.
- W3139708045 hasConceptScore W3139708045C50644808 @default.
- W3139708045 hasConceptScore W3139708045C524204448 @default.
- W3139708045 hasConceptScore W3139708045C71924100 @default.
- W3139708045 hasConceptScore W3139708045C81363708 @default.
- W3139708045 hasLocation W31397080451 @default.
- W3139708045 hasLocation W31397080452 @default.
- W3139708045 hasLocation W31397080453 @default.
- W3139708045 hasOpenAccess W3139708045 @default.
- W3139708045 hasPrimaryLocation W31397080451 @default.
- W3139708045 hasRelatedWork W2996856019 @default.
- W3139708045 hasRelatedWork W3018421652 @default.
- W3139708045 hasRelatedWork W3021430260 @default.
- W3139708045 hasRelatedWork W3091976719 @default.
- W3139708045 hasRelatedWork W3192840557 @default.
- W3139708045 hasRelatedWork W4220996320 @default.
- W3139708045 hasRelatedWork W4285149559 @default.
- W3139708045 hasRelatedWork W4312200629 @default.
- W3139708045 hasRelatedWork W4382286161 @default.
- W3139708045 hasRelatedWork W4386213806 @default.
- W3139708045 hasVolume "68" @default.
- W3139708045 isParatext "false" @default.
- W3139708045 isRetracted "false" @default.
- W3139708045 magId "3139708045" @default.
- W3139708045 workType "article" @default.