Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139747377> ?p ?o ?g. }
- W3139747377 endingPage "108526" @default.
- W3139747377 startingPage "108526" @default.
- W3139747377 abstract "In the last few years, methods falling within the family of randomization-based machine learning models have grasped a great interest in the Artificial Intelligence community, mainly due to their excellent balance between performance in prediction problems and their computational efficiency. The use of these models for prediction problems related to renewable energy sources has been particularly notable in recent times, including different ways in which randomization is considered, their hybridization with other modeling techniques and/or their multi-layered (deep) and ensemble arrangement. This manuscript comprehensively reviews the most important features of randomization-based machine learning methods, and critically examines recent evidences of their application to renewable energy prediction problems, focusing on those related to solar, wind, marine/ocean and hydro-power renewable sources. Our study of the literature is complemented by an extensive experimental setup encompassing three real-world problems dealing with solar radiation prediction, wind speed prediction in wind farms and hydro-power energy. In all these problems randomization-based methods are reported to achieve a better predictive performance than their corresponding state-of-the-art solutions, while demanding a dramatically lower computational effort for its learning phases. Finally, we pause and reflect on important challenges faced by these methods when applied to renewable energy prediction problems, such as their intrinsic epistemic uncertainty, or the need for explainability. We also point out several research opportunities that arise from this vibrant research area." @default.
- W3139747377 created "2021-04-13" @default.
- W3139747377 creator A5006062781 @default.
- W3139747377 creator A5015857589 @default.
- W3139747377 creator A5017326471 @default.
- W3139747377 creator A5031022520 @default.
- W3139747377 creator A5034384417 @default.
- W3139747377 creator A5060780612 @default.
- W3139747377 creator A5083855932 @default.
- W3139747377 date "2022-03-01" @default.
- W3139747377 modified "2023-10-18" @default.
- W3139747377 title "Randomization-based machine learning in renewable energy prediction problems: Critical literature review, new results and perspectives" @default.
- W3139747377 cites W1015475826 @default.
- W3139747377 cites W1124861640 @default.
- W3139747377 cites W1514832573 @default.
- W3139747377 cites W1598241312 @default.
- W3139747377 cites W1790870804 @default.
- W3139747377 cites W1967165756 @default.
- W3139747377 cites W1985727987 @default.
- W3139747377 cites W2015517331 @default.
- W3139747377 cites W2020577219 @default.
- W3139747377 cites W2026131661 @default.
- W3139747377 cites W2029869759 @default.
- W3139747377 cites W2039306928 @default.
- W3139747377 cites W2052437577 @default.
- W3139747377 cites W2067656095 @default.
- W3139747377 cites W2071791930 @default.
- W3139747377 cites W2071942969 @default.
- W3139747377 cites W2074088705 @default.
- W3139747377 cites W2079522653 @default.
- W3139747377 cites W2081322852 @default.
- W3139747377 cites W2087267299 @default.
- W3139747377 cites W2088874310 @default.
- W3139747377 cites W2111072639 @default.
- W3139747377 cites W2111959010 @default.
- W3139747377 cites W2113238782 @default.
- W3139747377 cites W2113902808 @default.
- W3139747377 cites W2137939562 @default.
- W3139747377 cites W2150414962 @default.
- W3139747377 cites W2210596467 @default.
- W3139747377 cites W2283737367 @default.
- W3139747377 cites W2286961399 @default.
- W3139747377 cites W2289530905 @default.
- W3139747377 cites W2298521547 @default.
- W3139747377 cites W2301541953 @default.
- W3139747377 cites W2330799659 @default.
- W3139747377 cites W2339332955 @default.
- W3139747377 cites W2419007014 @default.
- W3139747377 cites W2426663208 @default.
- W3139747377 cites W2473105253 @default.
- W3139747377 cites W2493181982 @default.
- W3139747377 cites W2510493731 @default.
- W3139747377 cites W2551844221 @default.
- W3139747377 cites W2588763092 @default.
- W3139747377 cites W2590277499 @default.
- W3139747377 cites W2600292797 @default.
- W3139747377 cites W2601345823 @default.
- W3139747377 cites W2605988013 @default.
- W3139747377 cites W2614092582 @default.
- W3139747377 cites W2742197121 @default.
- W3139747377 cites W2743395569 @default.
- W3139747377 cites W2746548997 @default.
- W3139747377 cites W274926194 @default.
- W3139747377 cites W2750263161 @default.
- W3139747377 cites W2754844703 @default.
- W3139747377 cites W2755302004 @default.
- W3139747377 cites W2755364685 @default.
- W3139747377 cites W2755749726 @default.
- W3139747377 cites W2755841959 @default.
- W3139747377 cites W2766387448 @default.
- W3139747377 cites W2766566007 @default.
- W3139747377 cites W2767124238 @default.
- W3139747377 cites W2774595318 @default.
- W3139747377 cites W2775043420 @default.
- W3139747377 cites W2792138461 @default.
- W3139747377 cites W2793187554 @default.
- W3139747377 cites W2793408387 @default.
- W3139747377 cites W2794103404 @default.
- W3139747377 cites W2799436787 @default.
- W3139747377 cites W2799581641 @default.
- W3139747377 cites W2799674728 @default.
- W3139747377 cites W2804526541 @default.
- W3139747377 cites W2805060551 @default.
- W3139747377 cites W2808150083 @default.
- W3139747377 cites W2810726137 @default.
- W3139747377 cites W2821843609 @default.
- W3139747377 cites W2883764212 @default.
- W3139747377 cites W2884415573 @default.
- W3139747377 cites W2884984074 @default.
- W3139747377 cites W2888003224 @default.
- W3139747377 cites W2888082488 @default.
- W3139747377 cites W2889323772 @default.
- W3139747377 cites W2889337219 @default.
- W3139747377 cites W2891503716 @default.
- W3139747377 cites W2892379895 @default.
- W3139747377 cites W2894229023 @default.
- W3139747377 cites W2895180337 @default.
- W3139747377 cites W2897156932 @default.