Matches in SemOpenAlex for { <https://semopenalex.org/work/W3139932503> ?p ?o ?g. }
- W3139932503 endingPage "1906" @default.
- W3139932503 startingPage "1898" @default.
- W3139932503 abstract "Abstract Objectives With the goal of facilitating the use of HIV-TRePS to optimize therapy in settings with limited healthcare resources, we aimed to develop computational models to predict treatment responses accurately in the absence of commonly used baseline data. Methods Twelve sets of random forest models were trained using very large, global datasets to predict either the probability of virological response (classifier models) or the absolute change in viral load in response to a new regimen (absolute models) following virological failure. Two ‘standard’ models were developed with all baseline variables present and 10 others developed without HIV genotype, time on therapy, CD4 count or any combination of the above. Results The standard classifier models achieved an AUC of 0.89 in cross-validation and independent testing. Models with missing variables achieved AUC values of 0.78–0.90. The standard absolute models made predictions that correlated significantly with observed changes in viral load with a mean absolute error of 0.65 log10 copies HIV RNA/mL in cross-validation and 0.69 log10 copies HIV RNA/mL in independent testing. Models with missing variables achieved values of 0.65–0.75 log10 copies HIV RNA/mL. All models identified alternative regimens that were predicted to be effective for the vast majority of cases where the new regimen prescribed in the clinic failed. All models were significantly better predictors of treatment response than genotyping with rules-based interpretation. Conclusions These latest models that predict treatment responses accurately, even when a number of baseline variables are not available, are a major advance with greatly enhanced potential benefit, particularly in resource-limited settings. The only obstacle to realizing this potential is the willingness of healthcare professions to use the system." @default.
- W3139932503 created "2021-04-13" @default.
- W3139932503 creator A5000661466 @default.
- W3139932503 creator A5000848132 @default.
- W3139932503 creator A5001375239 @default.
- W3139932503 creator A5003162468 @default.
- W3139932503 creator A5004151290 @default.
- W3139932503 creator A5006120211 @default.
- W3139932503 creator A5006623516 @default.
- W3139932503 creator A5007093708 @default.
- W3139932503 creator A5007742059 @default.
- W3139932503 creator A5013905877 @default.
- W3139932503 creator A5014224122 @default.
- W3139932503 creator A5014663441 @default.
- W3139932503 creator A5015892746 @default.
- W3139932503 creator A5017141290 @default.
- W3139932503 creator A5018478063 @default.
- W3139932503 creator A5020846975 @default.
- W3139932503 creator A5021849156 @default.
- W3139932503 creator A5024822456 @default.
- W3139932503 creator A5026939376 @default.
- W3139932503 creator A5028130303 @default.
- W3139932503 creator A5029953471 @default.
- W3139932503 creator A5030758371 @default.
- W3139932503 creator A5030905646 @default.
- W3139932503 creator A5031405790 @default.
- W3139932503 creator A5032031868 @default.
- W3139932503 creator A5033012471 @default.
- W3139932503 creator A5033023982 @default.
- W3139932503 creator A5033467980 @default.
- W3139932503 creator A5034390644 @default.
- W3139932503 creator A5038456845 @default.
- W3139932503 creator A5040228620 @default.
- W3139932503 creator A5044035449 @default.
- W3139932503 creator A5045518267 @default.
- W3139932503 creator A5048050447 @default.
- W3139932503 creator A5049207438 @default.
- W3139932503 creator A5049260734 @default.
- W3139932503 creator A5050102404 @default.
- W3139932503 creator A5051499023 @default.
- W3139932503 creator A5052671299 @default.
- W3139932503 creator A5052890068 @default.
- W3139932503 creator A5053433721 @default.
- W3139932503 creator A5061382446 @default.
- W3139932503 creator A5061653297 @default.
- W3139932503 creator A5061654869 @default.
- W3139932503 creator A5064487538 @default.
- W3139932503 creator A5064614188 @default.
- W3139932503 creator A5065229785 @default.
- W3139932503 creator A5065647297 @default.
- W3139932503 creator A5066028055 @default.
- W3139932503 creator A5066949455 @default.
- W3139932503 creator A5071711765 @default.
- W3139932503 creator A5072264738 @default.
- W3139932503 creator A5073460580 @default.
- W3139932503 creator A5074256223 @default.
- W3139932503 creator A5074373099 @default.
- W3139932503 creator A5074420045 @default.
- W3139932503 creator A5074441717 @default.
- W3139932503 creator A5075575064 @default.
- W3139932503 creator A5076012773 @default.
- W3139932503 creator A5076372390 @default.
- W3139932503 creator A5078602822 @default.
- W3139932503 creator A5080859236 @default.
- W3139932503 creator A5081141048 @default.
- W3139932503 creator A5081507613 @default.
- W3139932503 creator A5083296600 @default.
- W3139932503 creator A5083959541 @default.
- W3139932503 creator A5084809021 @default.
- W3139932503 date "2021-04-01" @default.
- W3139932503 modified "2023-10-18" @default.
- W3139932503 title "2021 update to HIV-TRePS: a highly flexible and accurate system for the prediction of treatment response from incomplete baseline information in different healthcare settings" @default.
- W3139932503 cites W15969640 @default.
- W3139932503 cites W2045871034 @default.
- W3139932503 cites W2052797697 @default.
- W3139932503 cites W2062290173 @default.
- W3139932503 cites W2095008894 @default.
- W3139932503 cites W2101002638 @default.
- W3139932503 cites W2127706932 @default.
- W3139932503 cites W2132471816 @default.
- W3139932503 cites W2150464933 @default.
- W3139932503 cites W2176545047 @default.
- W3139932503 cites W2182593161 @default.
- W3139932503 cites W2239032355 @default.
- W3139932503 cites W2312257867 @default.
- W3139932503 cites W2806355504 @default.
- W3139932503 cites W2915372808 @default.
- W3139932503 cites W2921556780 @default.
- W3139932503 cites W2945638044 @default.
- W3139932503 cites W4236479494 @default.
- W3139932503 doi "https://doi.org/10.1093/jac/dkab078" @default.
- W3139932503 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8212763" @default.
- W3139932503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33792714" @default.
- W3139932503 hasPublicationYear "2021" @default.
- W3139932503 type Work @default.
- W3139932503 sameAs 3139932503 @default.
- W3139932503 citedByCount "0" @default.
- W3139932503 crossrefType "journal-article" @default.