Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140166734> ?p ?o ?g. }
- W3140166734 endingPage "100580" @default.
- W3140166734 startingPage "100580" @default.
- W3140166734 abstract "The prediction of waterborne bacteria is crucial to prevent health risks. Therefore, there is a need to study the quality of groundwater by predicting the presence of E.coli. The experimental data for prediction is obtained from BITS-UVA (University of Virginia) groundwater contamination project, having 1301 experimental laboratory results that will be synthesized to test the physical, chemical, and microbiological parameters of water. In this study, a superposition-based learning algorithm (SLA) is proposed to observe the patterns of ANN-based sensitivity analysis to determine the importance of each water quality parameter resulting in the prediction of E.coli in groundwater. Mean Square Error (MSE) and the Coefficient of determination (R2) are calculated using MATLAB (R2019b, Mathworks, Natik, MA, USA) software for model performance evaluation. The highest correlation is observed between E.coli and the pH values, whereas the lowest correlation is observed with Dissolved Oxygen. In order to find out the uncertainty in the output of our mathematical model, a sensitivity analysis for the seven models is carried out. The results show that the model having Turbidity, pH, Total Dissolved Salts (TDS), and Electrical Conductivity as inputs displayed the best performance. The model architecture constitutes three hidden layers, twenty neurons in each layer, which is optimized using the Bayesian Regularization training algorithm (BR) with the overall highest R2 values of 0.90 and lowest MSE values of 0.0892. Patterns of the trained neural network are presented in superposition. After training, it can be concluded that the superposition models based on Grover's algorithm is more efficient in predicting all patterns in the counts of E.coli in groundwater. The algorithm is superimposed on multiple neural network architectures and returns a trained neural network. In addition to accurate results, there is also a need to automate the process of real-time bacterial monitoring for minimizing the error." @default.
- W3140166734 created "2021-04-13" @default.
- W3140166734 creator A5001052369 @default.
- W3140166734 creator A5012890871 @default.
- W3140166734 creator A5086628644 @default.
- W3140166734 date "2021-05-01" @default.
- W3140166734 modified "2023-10-13" @default.
- W3140166734 title "Superposition learning-based model for prediction of E.coli in groundwater using physico-chemical water quality parameters" @default.
- W3140166734 cites W1499035059 @default.
- W3140166734 cites W1565128410 @default.
- W3140166734 cites W1964195888 @default.
- W3140166734 cites W1965295747 @default.
- W3140166734 cites W1970349893 @default.
- W3140166734 cites W1971567680 @default.
- W3140166734 cites W1976649093 @default.
- W3140166734 cites W1980310800 @default.
- W3140166734 cites W1987362409 @default.
- W3140166734 cites W1992169881 @default.
- W3140166734 cites W1994352603 @default.
- W3140166734 cites W1995341919 @default.
- W3140166734 cites W2000997774 @default.
- W3140166734 cites W2002372750 @default.
- W3140166734 cites W2004944109 @default.
- W3140166734 cites W2006092710 @default.
- W3140166734 cites W2007098761 @default.
- W3140166734 cites W2008578468 @default.
- W3140166734 cites W2010565085 @default.
- W3140166734 cites W2015709179 @default.
- W3140166734 cites W2017565348 @default.
- W3140166734 cites W2017877881 @default.
- W3140166734 cites W2024331570 @default.
- W3140166734 cites W2036599383 @default.
- W3140166734 cites W2096103439 @default.
- W3140166734 cites W2113930013 @default.
- W3140166734 cites W2131650533 @default.
- W3140166734 cites W2132995696 @default.
- W3140166734 cites W2137983211 @default.
- W3140166734 cites W2155482699 @default.
- W3140166734 cites W2165719039 @default.
- W3140166734 cites W2317729965 @default.
- W3140166734 cites W2479243658 @default.
- W3140166734 cites W2595991421 @default.
- W3140166734 cites W2615083940 @default.
- W3140166734 cites W2769226333 @default.
- W3140166734 cites W2801024837 @default.
- W3140166734 cites W2810255417 @default.
- W3140166734 cites W2891986849 @default.
- W3140166734 cites W2911546748 @default.
- W3140166734 cites W67950724 @default.
- W3140166734 doi "https://doi.org/10.1016/j.gsd.2021.100580" @default.
- W3140166734 hasPublicationYear "2021" @default.
- W3140166734 type Work @default.
- W3140166734 sameAs 3140166734 @default.
- W3140166734 citedByCount "13" @default.
- W3140166734 countsByYear W31401667342021 @default.
- W3140166734 countsByYear W31401667342022 @default.
- W3140166734 countsByYear W31401667342023 @default.
- W3140166734 crossrefType "journal-article" @default.
- W3140166734 hasAuthorship W3140166734A5001052369 @default.
- W3140166734 hasAuthorship W3140166734A5012890871 @default.
- W3140166734 hasAuthorship W3140166734A5086628644 @default.
- W3140166734 hasConcept C105795698 @default.
- W3140166734 hasConcept C11413529 @default.
- W3140166734 hasConcept C119857082 @default.
- W3140166734 hasConcept C127413603 @default.
- W3140166734 hasConcept C134306372 @default.
- W3140166734 hasConcept C139945424 @default.
- W3140166734 hasConcept C159390177 @default.
- W3140166734 hasConcept C186060115 @default.
- W3140166734 hasConcept C187320778 @default.
- W3140166734 hasConcept C18903297 @default.
- W3140166734 hasConcept C21200559 @default.
- W3140166734 hasConcept C24326235 @default.
- W3140166734 hasConcept C27753989 @default.
- W3140166734 hasConcept C2780092901 @default.
- W3140166734 hasConcept C2780797713 @default.
- W3140166734 hasConcept C33923547 @default.
- W3140166734 hasConcept C39432304 @default.
- W3140166734 hasConcept C41008148 @default.
- W3140166734 hasConcept C50644808 @default.
- W3140166734 hasConcept C64016661 @default.
- W3140166734 hasConcept C76177295 @default.
- W3140166734 hasConcept C86803240 @default.
- W3140166734 hasConceptScore W3140166734C105795698 @default.
- W3140166734 hasConceptScore W3140166734C11413529 @default.
- W3140166734 hasConceptScore W3140166734C119857082 @default.
- W3140166734 hasConceptScore W3140166734C127413603 @default.
- W3140166734 hasConceptScore W3140166734C134306372 @default.
- W3140166734 hasConceptScore W3140166734C139945424 @default.
- W3140166734 hasConceptScore W3140166734C159390177 @default.
- W3140166734 hasConceptScore W3140166734C186060115 @default.
- W3140166734 hasConceptScore W3140166734C187320778 @default.
- W3140166734 hasConceptScore W3140166734C18903297 @default.
- W3140166734 hasConceptScore W3140166734C21200559 @default.
- W3140166734 hasConceptScore W3140166734C24326235 @default.
- W3140166734 hasConceptScore W3140166734C27753989 @default.
- W3140166734 hasConceptScore W3140166734C2780092901 @default.
- W3140166734 hasConceptScore W3140166734C2780797713 @default.