Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140187804> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3140187804 endingPage "e0248809" @default.
- W3140187804 startingPage "e0248809" @default.
- W3140187804 abstract "Background Fractures around the knee joint are inherently complex in terms of treatment; complication rates are high, and they are difficult to diagnose on a plain radiograph. An automated way of classifying radiographic images could improve diagnostic accuracy and would enable production of uniformly classified records of fractures to be used in researching treatment strategies for different fracture types. Recently deep learning, a form of artificial intelligence (AI), has shown promising results for interpreting radiographs. In this study, we aim to evaluate how well an AI can classify knee fractures according to the detailed 2018 AO-OTA fracture classification system. Methods We selected 6003 radiograph exams taken at Danderyd University Hospital between the years 2002–2016, and manually categorized them according to the AO/OTA classification system and by custom classifiers. We then trained a ResNet-based neural network on this data. We evaluated the performance against a test set of 600 exams. Two senior orthopedic surgeons had reviewed these exams independently where we settled exams with disagreement through a consensus session. Results We captured a total of 49 nested fracture classes. Weighted mean AUC was 0.87 for proximal tibia fractures, 0.89 for patella fractures and 0.89 for distal femur fractures. Almost ¾ of AUC estimates were above 0.8, out of which more than half reached an AUC of 0.9 or above indicating excellent performance. Conclusion Our study shows that neural networks can be used not only for fracture identification but also for more detailed classification of fractures around the knee joint." @default.
- W3140187804 created "2021-04-13" @default.
- W3140187804 creator A5013484847 @default.
- W3140187804 creator A5014319566 @default.
- W3140187804 creator A5022575407 @default.
- W3140187804 creator A5043267289 @default.
- W3140187804 creator A5056300986 @default.
- W3140187804 creator A5076423086 @default.
- W3140187804 creator A5087349940 @default.
- W3140187804 date "2021-04-01" @default.
- W3140187804 modified "2023-10-01" @default.
- W3140187804 title "Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system" @default.
- W3140187804 cites W1637283730 @default.
- W3140187804 cites W1980276147 @default.
- W3140187804 cites W2034841618 @default.
- W3140187804 cites W2100495367 @default.
- W3140187804 cites W2142325157 @default.
- W3140187804 cites W2167460663 @default.
- W3140187804 cites W2196704454 @default.
- W3140187804 cites W2493683088 @default.
- W3140187804 cites W2520163792 @default.
- W3140187804 cites W2563780839 @default.
- W3140187804 cites W2581082771 @default.
- W3140187804 cites W2588978745 @default.
- W3140187804 cites W2733840449 @default.
- W3140187804 cites W2772246530 @default.
- W3140187804 cites W2776581140 @default.
- W3140187804 cites W2793251588 @default.
- W3140187804 cites W2811095288 @default.
- W3140187804 cites W2897228760 @default.
- W3140187804 cites W2911066482 @default.
- W3140187804 cites W2915041319 @default.
- W3140187804 cites W2934730619 @default.
- W3140187804 cites W4294214983 @default.
- W3140187804 doi "https://doi.org/10.1371/journal.pone.0248809" @default.
- W3140187804 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8016258" @default.
- W3140187804 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33793601" @default.
- W3140187804 hasPublicationYear "2021" @default.
- W3140187804 type Work @default.
- W3140187804 sameAs 3140187804 @default.
- W3140187804 citedByCount "9" @default.
- W3140187804 countsByYear W31401878042021 @default.
- W3140187804 countsByYear W31401878042022 @default.
- W3140187804 countsByYear W31401878042023 @default.
- W3140187804 crossrefType "journal-article" @default.
- W3140187804 hasAuthorship W3140187804A5013484847 @default.
- W3140187804 hasAuthorship W3140187804A5014319566 @default.
- W3140187804 hasAuthorship W3140187804A5022575407 @default.
- W3140187804 hasAuthorship W3140187804A5043267289 @default.
- W3140187804 hasAuthorship W3140187804A5056300986 @default.
- W3140187804 hasAuthorship W3140187804A5076423086 @default.
- W3140187804 hasAuthorship W3140187804A5087349940 @default.
- W3140187804 hasBestOaLocation W31401878041 @default.
- W3140187804 hasConcept C119857082 @default.
- W3140187804 hasConcept C141071460 @default.
- W3140187804 hasConcept C154945302 @default.
- W3140187804 hasConcept C2777236700 @default.
- W3140187804 hasConcept C2780368125 @default.
- W3140187804 hasConcept C2908736133 @default.
- W3140187804 hasConcept C29694066 @default.
- W3140187804 hasConcept C36454342 @default.
- W3140187804 hasConcept C41008148 @default.
- W3140187804 hasConcept C50644808 @default.
- W3140187804 hasConcept C68312169 @default.
- W3140187804 hasConcept C71924100 @default.
- W3140187804 hasConceptScore W3140187804C119857082 @default.
- W3140187804 hasConceptScore W3140187804C141071460 @default.
- W3140187804 hasConceptScore W3140187804C154945302 @default.
- W3140187804 hasConceptScore W3140187804C2777236700 @default.
- W3140187804 hasConceptScore W3140187804C2780368125 @default.
- W3140187804 hasConceptScore W3140187804C2908736133 @default.
- W3140187804 hasConceptScore W3140187804C29694066 @default.
- W3140187804 hasConceptScore W3140187804C36454342 @default.
- W3140187804 hasConceptScore W3140187804C41008148 @default.
- W3140187804 hasConceptScore W3140187804C50644808 @default.
- W3140187804 hasConceptScore W3140187804C68312169 @default.
- W3140187804 hasConceptScore W3140187804C71924100 @default.
- W3140187804 hasFunder F4320322315 @default.
- W3140187804 hasIssue "4" @default.
- W3140187804 hasLocation W31401878041 @default.
- W3140187804 hasLocation W31401878042 @default.
- W3140187804 hasOpenAccess W3140187804 @default.
- W3140187804 hasPrimaryLocation W31401878041 @default.
- W3140187804 hasRelatedWork W1597340052 @default.
- W3140187804 hasRelatedWork W1964317449 @default.
- W3140187804 hasRelatedWork W1979153714 @default.
- W3140187804 hasRelatedWork W2001422824 @default.
- W3140187804 hasRelatedWork W2042566367 @default.
- W3140187804 hasRelatedWork W2058932058 @default.
- W3140187804 hasRelatedWork W2386570546 @default.
- W3140187804 hasRelatedWork W2992702914 @default.
- W3140187804 hasRelatedWork W977344535 @default.
- W3140187804 hasRelatedWork W2520577175 @default.
- W3140187804 hasVolume "16" @default.
- W3140187804 isParatext "false" @default.
- W3140187804 isRetracted "false" @default.
- W3140187804 magId "3140187804" @default.
- W3140187804 workType "article" @default.