Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140342296> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3140342296 endingPage "105578" @default.
- W3140342296 startingPage "105578" @default.
- W3140342296 abstract "We previously demonstrated that Machine learning (ML) algorithms can accurately estimate drug area under the curve (AUC) of tacrolimus or mycophenolate mofetil (MMF) based on limited information, as well as or even better than maximum a posteriori Bayesian estimation (MAP-BE). However, the major limitation in the development of such ML algorithms is the limited availability of large databases of concentration vs. time profiles for such drugs. The objectives of this study were: (i) to develop a Xgboost model to estimate tacrolimus inter-dose AUC based on concentration-time profiles obtained from a literature population pharmacokinetic (POPPK) model using Monte Carlo simulation; and (ii) to compare its performance with that of MAP-BE in external datasets of rich concentration-time profiles. The population parameters of a previously published PK model were used in the mrgsolve R package to simulate 9000 rich interdose tacrolimus profiles (one concentration simulated every 30 min) at steady-state. Data splitting was performed to obtain a training set (75%) and a test set (25%). Xgboost algorithms able to estimate tacrolimus AUC based on 2 or 3 concentrations were developed in the training set and the model with the lowest RMSE in a ten-fold cross-validation experiment was evaluated in the test set, as well as in 4 independent, rich PK datasets from transplant patients. ML algorithms based on 2 or 3 concentrations and a few covariates yielded excellent AUC estimation in the external validation datasets (relative bias < 5% and relative RMSE < 10%), comparable to those obtained with MAP-BE. In conclusion, Xgboost machine learning models trained on concentration-time profiles simulated using literature POPPK models allow accurate tacrolimus AUC estimation based on sparse concentration data. This study paves the way to the development of artificial intelligence at the service of precision therapeutic drug monitoring in different therapeutic areas." @default.
- W3140342296 created "2021-04-13" @default.
- W3140342296 creator A5003712720 @default.
- W3140342296 creator A5010899888 @default.
- W3140342296 creator A5027554290 @default.
- W3140342296 creator A5068185628 @default.
- W3140342296 date "2021-05-01" @default.
- W3140342296 modified "2023-10-18" @default.
- W3140342296 title "Estimation of drug exposure by machine learning based on simulations from published pharmacokinetic models: The example of tacrolimus" @default.
- W3140342296 cites W1510950638 @default.
- W3140342296 cites W1913989311 @default.
- W3140342296 cites W1985067438 @default.
- W3140342296 cites W2000230167 @default.
- W3140342296 cites W2000741779 @default.
- W3140342296 cites W2115324773 @default.
- W3140342296 cites W2755863928 @default.
- W3140342296 cites W2771076594 @default.
- W3140342296 cites W2771620589 @default.
- W3140342296 cites W2899938045 @default.
- W3140342296 cites W2920014134 @default.
- W3140342296 cites W2935776523 @default.
- W3140342296 cites W2970358690 @default.
- W3140342296 cites W3020295988 @default.
- W3140342296 cites W3102476541 @default.
- W3140342296 cites W900322993 @default.
- W3140342296 doi "https://doi.org/10.1016/j.phrs.2021.105578" @default.
- W3140342296 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33775863" @default.
- W3140342296 hasPublicationYear "2021" @default.
- W3140342296 type Work @default.
- W3140342296 sameAs 3140342296 @default.
- W3140342296 citedByCount "21" @default.
- W3140342296 countsByYear W31403422962021 @default.
- W3140342296 countsByYear W31403422962022 @default.
- W3140342296 countsByYear W31403422962023 @default.
- W3140342296 crossrefType "journal-article" @default.
- W3140342296 hasAuthorship W3140342296A5003712720 @default.
- W3140342296 hasAuthorship W3140342296A5010899888 @default.
- W3140342296 hasAuthorship W3140342296A5027554290 @default.
- W3140342296 hasAuthorship W3140342296A5068185628 @default.
- W3140342296 hasBestOaLocation W31403422961 @default.
- W3140342296 hasConcept C105795698 @default.
- W3140342296 hasConcept C107673813 @default.
- W3140342296 hasConcept C112705442 @default.
- W3140342296 hasConcept C119043178 @default.
- W3140342296 hasConcept C139945424 @default.
- W3140342296 hasConcept C141071460 @default.
- W3140342296 hasConcept C169903167 @default.
- W3140342296 hasConcept C19499675 @default.
- W3140342296 hasConcept C2908647359 @default.
- W3140342296 hasConcept C2909675724 @default.
- W3140342296 hasConcept C2911091166 @default.
- W3140342296 hasConcept C33923547 @default.
- W3140342296 hasConcept C41008148 @default.
- W3140342296 hasConcept C49781872 @default.
- W3140342296 hasConcept C71924100 @default.
- W3140342296 hasConcept C9810830 @default.
- W3140342296 hasConcept C98274493 @default.
- W3140342296 hasConcept C99454951 @default.
- W3140342296 hasConceptScore W3140342296C105795698 @default.
- W3140342296 hasConceptScore W3140342296C107673813 @default.
- W3140342296 hasConceptScore W3140342296C112705442 @default.
- W3140342296 hasConceptScore W3140342296C119043178 @default.
- W3140342296 hasConceptScore W3140342296C139945424 @default.
- W3140342296 hasConceptScore W3140342296C141071460 @default.
- W3140342296 hasConceptScore W3140342296C169903167 @default.
- W3140342296 hasConceptScore W3140342296C19499675 @default.
- W3140342296 hasConceptScore W3140342296C2908647359 @default.
- W3140342296 hasConceptScore W3140342296C2909675724 @default.
- W3140342296 hasConceptScore W3140342296C2911091166 @default.
- W3140342296 hasConceptScore W3140342296C33923547 @default.
- W3140342296 hasConceptScore W3140342296C41008148 @default.
- W3140342296 hasConceptScore W3140342296C49781872 @default.
- W3140342296 hasConceptScore W3140342296C71924100 @default.
- W3140342296 hasConceptScore W3140342296C9810830 @default.
- W3140342296 hasConceptScore W3140342296C98274493 @default.
- W3140342296 hasConceptScore W3140342296C99454951 @default.
- W3140342296 hasLocation W31403422961 @default.
- W3140342296 hasLocation W31403422962 @default.
- W3140342296 hasOpenAccess W3140342296 @default.
- W3140342296 hasPrimaryLocation W31403422961 @default.
- W3140342296 hasRelatedWork W2003921494 @default.
- W3140342296 hasRelatedWork W2073742890 @default.
- W3140342296 hasRelatedWork W2327110598 @default.
- W3140342296 hasRelatedWork W2384248322 @default.
- W3140342296 hasRelatedWork W2386104594 @default.
- W3140342296 hasRelatedWork W2604110409 @default.
- W3140342296 hasRelatedWork W2973764369 @default.
- W3140342296 hasRelatedWork W3150855330 @default.
- W3140342296 hasRelatedWork W3207196874 @default.
- W3140342296 hasRelatedWork W4200557508 @default.
- W3140342296 hasVolume "167" @default.
- W3140342296 isParatext "false" @default.
- W3140342296 isRetracted "false" @default.
- W3140342296 magId "3140342296" @default.
- W3140342296 workType "article" @default.