Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140362750> ?p ?o ?g. }
- W3140362750 endingPage "115097" @default.
- W3140362750 startingPage "115097" @default.
- W3140362750 abstract "• Biochars pyrolyzed at different temperatures affect differently soil pore characteristics. • RSB increased total pore volume (TPV) in soil, while CSB decreased soil TPV. • Biochar altered the pore size distribution of soils, differing with soil type and feedstock. • RSB promoted the formation of 0.1–30 μm pores, and CSB increased 0.1–5 μm pores in soils. • Biochars made at 450 °C was the optimal for improving soil pore characteristics. Soil physical properties are potentially affected by the addition of biochar. The effect is largely determined by the pore characteristics of biochar, especially the biochar’s feedstocks and pyrolysis processes. This study examined the pore characteristics of rice straw biochars (RSB) and canola stalk biochars (CSB) produced at pyrolysis temperatures of 250, 350, 450, 550, and 650 °C, and evaluated the effects of biochars on soil pore properties. The pore characteristics of biochars were characterized by nitrogen adsorption isotherm (NAI), mercury intrusion porosimetry (MIP), and scanning electron microscope (SEM). Each biochar was mixed into two soils (Ultisol and Alfisol) at the rate of 1% (w/w), then the soil-biochar mixtures were incubated for 90 days. The specific surface area (SSA) and total pore volume (TPV) measured by NAI technique increased with increasing pyrolysis temperature of biochar. Biochars pyrolyzed at 450 °C had the highest porosity and TPV measured by MIP. The largest pore class for RSB was the macropore (>75 μm), while the main pore classes for CSB were micropore (5–30 μm) and ultramicropore (0.1–5 μm). Incubation experimental results showed that biochar addition altered the pore size distribution of the Alfisol and Ultisol. RSB enhanced the total porosity and microporosity of soils, whereas CSB decreased total porosity, macroporosity, and mesoporosity. The water-holding capacity of soil was increased by increasing the amount of soil storage pores caused by biochar. Heatmap analysis on the correlation among pyrolysis temperature of biochar, pore characteristic and water retention capacity of biochar-amended soils illustrated that the pore properties of the Ultisol amended with CSB and the water properties of the Alfisol with CSB were highly correlated with pyrolysis temperature of biochar. Our results suggested the meso- and micro-pores in biochars played an important role to affect the soil response to biochar addition. Based on pore properties, pyrolysis temperature around 450 °C was found to be the optimal condition for producing porous biochar with larger porosity." @default.
- W3140362750 created "2021-04-13" @default.
- W3140362750 creator A5014948422 @default.
- W3140362750 creator A5077322975 @default.
- W3140362750 creator A5082224365 @default.
- W3140362750 date "2021-09-01" @default.
- W3140362750 modified "2023-10-18" @default.
- W3140362750 title "Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils" @default.
- W3140362750 cites W1466802614 @default.
- W3140362750 cites W1968051693 @default.
- W3140362750 cites W1978985658 @default.
- W3140362750 cites W1984160554 @default.
- W3140362750 cites W1985103823 @default.
- W3140362750 cites W1992765786 @default.
- W3140362750 cites W2000100608 @default.
- W3140362750 cites W2002144749 @default.
- W3140362750 cites W2009664952 @default.
- W3140362750 cites W2027838073 @default.
- W3140362750 cites W2031493035 @default.
- W3140362750 cites W2031671855 @default.
- W3140362750 cites W2033973429 @default.
- W3140362750 cites W2050695214 @default.
- W3140362750 cites W2057247657 @default.
- W3140362750 cites W2061026783 @default.
- W3140362750 cites W2063180224 @default.
- W3140362750 cites W2075435443 @default.
- W3140362750 cites W2079230570 @default.
- W3140362750 cites W2082899539 @default.
- W3140362750 cites W2084275494 @default.
- W3140362750 cites W2086810019 @default.
- W3140362750 cites W2088863732 @default.
- W3140362750 cites W2095505314 @default.
- W3140362750 cites W2118750261 @default.
- W3140362750 cites W2119522390 @default.
- W3140362750 cites W2121228681 @default.
- W3140362750 cites W2121642095 @default.
- W3140362750 cites W2126768074 @default.
- W3140362750 cites W2149529011 @default.
- W3140362750 cites W2150283767 @default.
- W3140362750 cites W2156119887 @default.
- W3140362750 cites W2160420608 @default.
- W3140362750 cites W2193298043 @default.
- W3140362750 cites W2318769062 @default.
- W3140362750 cites W2340277739 @default.
- W3140362750 cites W2475352904 @default.
- W3140362750 cites W2492907523 @default.
- W3140362750 cites W2726540672 @default.
- W3140362750 cites W2751135976 @default.
- W3140362750 cites W2756661305 @default.
- W3140362750 cites W2757705552 @default.
- W3140362750 cites W2771041979 @default.
- W3140362750 cites W2782186261 @default.
- W3140362750 cites W2884229506 @default.
- W3140362750 cites W2884800549 @default.
- W3140362750 cites W2889097392 @default.
- W3140362750 cites W2905804968 @default.
- W3140362750 cites W2908652976 @default.
- W3140362750 cites W2934963917 @default.
- W3140362750 cites W2947116544 @default.
- W3140362750 cites W2951283526 @default.
- W3140362750 cites W2954553314 @default.
- W3140362750 cites W2958486438 @default.
- W3140362750 cites W3000215085 @default.
- W3140362750 cites W3001130239 @default.
- W3140362750 cites W3002920647 @default.
- W3140362750 cites W3084208808 @default.
- W3140362750 cites W788933058 @default.
- W3140362750 doi "https://doi.org/10.1016/j.geoderma.2021.115097" @default.
- W3140362750 hasPublicationYear "2021" @default.
- W3140362750 type Work @default.
- W3140362750 sameAs 3140362750 @default.
- W3140362750 citedByCount "48" @default.
- W3140362750 countsByYear W31403627502021 @default.
- W3140362750 countsByYear W31403627502022 @default.
- W3140362750 countsByYear W31403627502023 @default.
- W3140362750 crossrefType "journal-article" @default.
- W3140362750 hasAuthorship W3140362750A5014948422 @default.
- W3140362750 hasAuthorship W3140362750A5077322975 @default.
- W3140362750 hasAuthorship W3140362750A5082224365 @default.
- W3140362750 hasConcept C105569014 @default.
- W3140362750 hasConcept C107872376 @default.
- W3140362750 hasConcept C114873805 @default.
- W3140362750 hasConcept C154108195 @default.
- W3140362750 hasConcept C159390177 @default.
- W3140362750 hasConcept C159750122 @default.
- W3140362750 hasConcept C161790260 @default.
- W3140362750 hasConcept C178790620 @default.
- W3140362750 hasConcept C185592680 @default.
- W3140362750 hasConcept C2781410044 @default.
- W3140362750 hasConcept C36759035 @default.
- W3140362750 hasConcept C39432304 @default.
- W3140362750 hasConcept C526406351 @default.
- W3140362750 hasConcept C56085101 @default.
- W3140362750 hasConcept C57924286 @default.
- W3140362750 hasConcept C6648577 @default.
- W3140362750 hasConcept C82776694 @default.
- W3140362750 hasConceptScore W3140362750C105569014 @default.
- W3140362750 hasConceptScore W3140362750C107872376 @default.