Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140593863> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3140593863 endingPage "126776" @default.
- W3140593863 startingPage "126776" @default.
- W3140593863 abstract "As one of the main reference data of weather forecast, weather radar echo image is very important to the stability of agricultural production. Different radar echo patterns represent different disastrous weather, such as hail, severe convection, and so on. Weather radar echo shape prediction can help meteorologists to judge the future changes of disastrous weather, help to avoid the harm of extreme weather to agriculture, and minimize agricultural economic losses. With the application of deep learning in the meteorological field, the deep learning method shows great potential in radar echo prediction. However, there are few research methods to predict the change of weather radar echo shape. This paper presents a radar echo prediction method based on c Convolutional Neural Networks and Long Short-Term Memory networks, which can effectively predict the shape of weather radar echo. The actual data is used to train and test our model. Experiments show that the model can accurately predict the change of echo shape. The quantitative evaluation of the model uses detection probability, false alarm rate, critical success index, and heidke skill score. The average scores predicted by this model in 1.5 h were 0.8223,0.2012,0.6812 and 0.7564, respectively, which were better than those predicted by ConvLSTM and TrajGRU models. The qualitative and quantitative results verify the effectiveness of the model, which shows that the model can be effectively applied to the actual weather forecast and improve the stability of agricultural production." @default.
- W3140593863 created "2021-04-13" @default.
- W3140593863 creator A5018453309 @default.
- W3140593863 creator A5018711318 @default.
- W3140593863 creator A5022962515 @default.
- W3140593863 creator A5077558876 @default.
- W3140593863 creator A5081796668 @default.
- W3140593863 date "2021-05-01" @default.
- W3140593863 modified "2023-10-09" @default.
- W3140593863 title "Weather radar echo prediction method based on convolution neural network and Long Short-Term memory networks for sustainable e-agriculture" @default.
- W3140593863 cites W2016184960 @default.
- W3140593863 cites W2044628480 @default.
- W3140593863 cites W2048563318 @default.
- W3140593863 cites W2058913535 @default.
- W3140593863 cites W2094448605 @default.
- W3140593863 cites W2108313219 @default.
- W3140593863 cites W2117671103 @default.
- W3140593863 cites W2171314103 @default.
- W3140593863 cites W2174781512 @default.
- W3140593863 cites W2175461096 @default.
- W3140593863 cites W2177216641 @default.
- W3140593863 cites W2730743298 @default.
- W3140593863 cites W2766051620 @default.
- W3140593863 cites W2943446701 @default.
- W3140593863 cites W2964063558 @default.
- W3140593863 cites W2972792628 @default.
- W3140593863 cites W4254548280 @default.
- W3140593863 doi "https://doi.org/10.1016/j.jclepro.2021.126776" @default.
- W3140593863 hasPublicationYear "2021" @default.
- W3140593863 type Work @default.
- W3140593863 sameAs 3140593863 @default.
- W3140593863 citedByCount "40" @default.
- W3140593863 countsByYear W31405938632021 @default.
- W3140593863 countsByYear W31405938632022 @default.
- W3140593863 countsByYear W31405938632023 @default.
- W3140593863 crossrefType "journal-article" @default.
- W3140593863 hasAuthorship W3140593863A5018453309 @default.
- W3140593863 hasAuthorship W3140593863A5018711318 @default.
- W3140593863 hasAuthorship W3140593863A5022962515 @default.
- W3140593863 hasAuthorship W3140593863A5077558876 @default.
- W3140593863 hasAuthorship W3140593863A5081796668 @default.
- W3140593863 hasConcept C112972136 @default.
- W3140593863 hasConcept C119857082 @default.
- W3140593863 hasConcept C153294291 @default.
- W3140593863 hasConcept C154945302 @default.
- W3140593863 hasConcept C205649164 @default.
- W3140593863 hasConcept C2778559676 @default.
- W3140593863 hasConcept C2779426996 @default.
- W3140593863 hasConcept C31258907 @default.
- W3140593863 hasConcept C39432304 @default.
- W3140593863 hasConcept C41008148 @default.
- W3140593863 hasConcept C50644808 @default.
- W3140593863 hasConcept C554190296 @default.
- W3140593863 hasConcept C62649853 @default.
- W3140593863 hasConcept C76155785 @default.
- W3140593863 hasConcept C81363708 @default.
- W3140593863 hasConcept C92237259 @default.
- W3140593863 hasConceptScore W3140593863C112972136 @default.
- W3140593863 hasConceptScore W3140593863C119857082 @default.
- W3140593863 hasConceptScore W3140593863C153294291 @default.
- W3140593863 hasConceptScore W3140593863C154945302 @default.
- W3140593863 hasConceptScore W3140593863C205649164 @default.
- W3140593863 hasConceptScore W3140593863C2778559676 @default.
- W3140593863 hasConceptScore W3140593863C2779426996 @default.
- W3140593863 hasConceptScore W3140593863C31258907 @default.
- W3140593863 hasConceptScore W3140593863C39432304 @default.
- W3140593863 hasConceptScore W3140593863C41008148 @default.
- W3140593863 hasConceptScore W3140593863C50644808 @default.
- W3140593863 hasConceptScore W3140593863C554190296 @default.
- W3140593863 hasConceptScore W3140593863C62649853 @default.
- W3140593863 hasConceptScore W3140593863C76155785 @default.
- W3140593863 hasConceptScore W3140593863C81363708 @default.
- W3140593863 hasConceptScore W3140593863C92237259 @default.
- W3140593863 hasFunder F4320335955 @default.
- W3140593863 hasLocation W31405938631 @default.
- W3140593863 hasOpenAccess W3140593863 @default.
- W3140593863 hasPrimaryLocation W31405938631 @default.
- W3140593863 hasRelatedWork W2350124979 @default.
- W3140593863 hasRelatedWork W2356511791 @default.
- W3140593863 hasRelatedWork W2364876137 @default.
- W3140593863 hasRelatedWork W2374506388 @default.
- W3140593863 hasRelatedWork W2376353880 @default.
- W3140593863 hasRelatedWork W2391853280 @default.
- W3140593863 hasRelatedWork W2612534966 @default.
- W3140593863 hasRelatedWork W2994168332 @default.
- W3140593863 hasRelatedWork W3093652585 @default.
- W3140593863 hasRelatedWork W4328124013 @default.
- W3140593863 hasVolume "298" @default.
- W3140593863 isParatext "false" @default.
- W3140593863 isRetracted "false" @default.
- W3140593863 magId "3140593863" @default.
- W3140593863 workType "article" @default.