Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140791029> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3140791029 abstract "Recent achievements in depth prediction from a single RGB image have powered the new research area of combining convolutional neural networks (CNNs) with classical simultaneous localization and mapping (SLAM) algorithms. The depth prediction from a CNN provides a reasonable initial point in the optimization process in the traditional SLAM algorithms, while the SLAM algorithms further improve the CNN prediction online. However, most of the current CNN-SLAM approaches have only taken advantage of the depth prediction but not yet other products from a CNN. In this work, we explore the use of the outlier mask, a by-product from unsupervised learning of depth from video, as a prior in a classical probability model for depth estimate fusion to step up the outlier-resistant tracking performance of a SLAM front-end. On the other hand, some of the previous CNN-SLAM work builds on feature-based sparse SLAM methods, wasting the per-pixel dense prediction from a CNN. In contrast to these sparse methods, we devise a dense CNN-assisted SLAM front-end that is implementable with TensorFlow and evaluate it on both indoor and outdoor datasets." @default.
- W3140791029 created "2021-04-13" @default.
- W3140791029 creator A5038878717 @default.
- W3140791029 creator A5078548833 @default.
- W3140791029 date "2021-04-01" @default.
- W3140791029 modified "2023-09-26" @default.
- W3140791029 title "A Front-End for Dense Monocular SLAM using a Learned Outlier Mask Prior" @default.
- W3140791029 cites W1970504153 @default.
- W3140791029 cites W2021851106 @default.
- W3140791029 cites W2093659073 @default.
- W3140791029 cites W2108134361 @default.
- W3140791029 cites W2115579991 @default.
- W3140791029 cites W2118428504 @default.
- W3140791029 cites W2140599684 @default.
- W3140791029 cites W2142702104 @default.
- W3140791029 cites W2151290401 @default.
- W3140791029 cites W2171740948 @default.
- W3140791029 cites W2340897893 @default.
- W3140791029 cites W2474281075 @default.
- W3140791029 cites W2520707372 @default.
- W3140791029 cites W2523049145 @default.
- W3140791029 cites W2594519801 @default.
- W3140791029 cites W2600383743 @default.
- W3140791029 cites W2609883120 @default.
- W3140791029 cites W2830339951 @default.
- W3140791029 cites W2895774031 @default.
- W3140791029 cites W2950493473 @default.
- W3140791029 cites W2951004968 @default.
- W3140791029 cites W2963591054 @default.
- W3140791029 cites W2963706662 @default.
- W3140791029 cites W2963906250 @default.
- W3140791029 cites W2970369664 @default.
- W3140791029 cites W2980925180 @default.
- W3140791029 cites W2985775862 @default.
- W3140791029 cites W3035056458 @default.
- W3140791029 cites W3102327032 @default.
- W3140791029 cites W3106458387 @default.
- W3140791029 cites W3124420883 @default.
- W3140791029 cites W3138768133 @default.
- W3140791029 cites W612478963 @default.
- W3140791029 doi "https://doi.org/10.48550/arxiv.2104.00562" @default.
- W3140791029 hasPublicationYear "2021" @default.
- W3140791029 type Work @default.
- W3140791029 sameAs 3140791029 @default.
- W3140791029 citedByCount "0" @default.
- W3140791029 crossrefType "posted-content" @default.
- W3140791029 hasAuthorship W3140791029A5038878717 @default.
- W3140791029 hasAuthorship W3140791029A5078548833 @default.
- W3140791029 hasBestOaLocation W31407910291 @default.
- W3140791029 hasConcept C108583219 @default.
- W3140791029 hasConcept C138885662 @default.
- W3140791029 hasConcept C153180895 @default.
- W3140791029 hasConcept C154945302 @default.
- W3140791029 hasConcept C19966478 @default.
- W3140791029 hasConcept C2776401178 @default.
- W3140791029 hasConcept C31972630 @default.
- W3140791029 hasConcept C41008148 @default.
- W3140791029 hasConcept C41895202 @default.
- W3140791029 hasConcept C65909025 @default.
- W3140791029 hasConcept C79337645 @default.
- W3140791029 hasConcept C81363708 @default.
- W3140791029 hasConcept C86369673 @default.
- W3140791029 hasConcept C90509273 @default.
- W3140791029 hasConceptScore W3140791029C108583219 @default.
- W3140791029 hasConceptScore W3140791029C138885662 @default.
- W3140791029 hasConceptScore W3140791029C153180895 @default.
- W3140791029 hasConceptScore W3140791029C154945302 @default.
- W3140791029 hasConceptScore W3140791029C19966478 @default.
- W3140791029 hasConceptScore W3140791029C2776401178 @default.
- W3140791029 hasConceptScore W3140791029C31972630 @default.
- W3140791029 hasConceptScore W3140791029C41008148 @default.
- W3140791029 hasConceptScore W3140791029C41895202 @default.
- W3140791029 hasConceptScore W3140791029C65909025 @default.
- W3140791029 hasConceptScore W3140791029C79337645 @default.
- W3140791029 hasConceptScore W3140791029C81363708 @default.
- W3140791029 hasConceptScore W3140791029C86369673 @default.
- W3140791029 hasConceptScore W3140791029C90509273 @default.
- W3140791029 hasLocation W31407910291 @default.
- W3140791029 hasOpenAccess W3140791029 @default.
- W3140791029 hasPrimaryLocation W31407910291 @default.
- W3140791029 hasRelatedWork W2031672365 @default.
- W3140791029 hasRelatedWork W2116298349 @default.
- W3140791029 hasRelatedWork W2771919221 @default.
- W3140791029 hasRelatedWork W3009893655 @default.
- W3140791029 hasRelatedWork W3110752836 @default.
- W3140791029 hasRelatedWork W3158344581 @default.
- W3140791029 hasRelatedWork W3183290586 @default.
- W3140791029 hasRelatedWork W3185738386 @default.
- W3140791029 hasRelatedWork W4287195903 @default.
- W3140791029 hasRelatedWork W4312708709 @default.
- W3140791029 isParatext "false" @default.
- W3140791029 isRetracted "false" @default.
- W3140791029 magId "3140791029" @default.
- W3140791029 workType "article" @default.