Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140816503> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3140816503 abstract "Understanding human navigation behavior has implications for a wide range of application scenarios. For example, insights into geo-spatial navigation in urban areas can impact city planning or public transport. Similarly, knowledge about navigation on the web can help to improve web site structures or service experience. In this work, we focus on a hypothesis-driven approach to address the task of understanding human navigation: We aim to formulate and compare ideas — for example stemming from existing theory, literature, intuition, or previous experiments — based on a given set of navigational observations. For example, we may compare whether tourists exploring a city walk “short distances” before taking their next photo vs. they tend to travel long distances between points of or whether users browsing Wikipedia navigate semantically vs. click randomly.For this, the Bayesian method HypTrails has recently been proposed. However, while HypTrails is a straightforward and flexible approach, several major challenges remain:i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving user groups such as tourists and locals is not possible), ii) HypTrails does not support the user in conceiving novel hypotheses when confronted with a large set of possibly relevant background information or influence factors, e.g., points of interest, popularity of locations, time of the day, or user properties, and finally iii) formulating hypotheses can be technically challenging depending on the application scenario (e.g., due to continuous observations or temporal constraints). In this thesis, we address these limitations by introducing various novel methods and tools and explore a wide range of case studies. In particular, our main contributions are the methods MixedTrails and SubTrails which specifically address the first two limitations: MixedTrails is an approach for hypothesis comparison that extends the previously proposed HypTrails method to allow formulating and comparing heterogeneous hypotheses (e.g., incorporating differently behaving user groups). SubTrails is a method that supports hypothesis conception by automatically discovering interpretable subgroups with exceptional navigation behavior. In addition, our methodological contributions also include several tools consisting of a distributed implementation of HypTrails, a web application for visualizing geo-spatial human navigation in the context of background information, as well as a system for collecting, analyzing, and visualizing mobile participatory sensing data. Furthermore, we conduct case studies in many application domains, which encompass — among others — geo-spatial navigation based on photos from the photo-sharing platform Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing behavior on a commercial crowdsourcing platform. In the process, we develop approaches to cope with application specific subtleties (like continuous observations and temporal constraints). The corresponding studies illustrate the variety of domains and facets in which navigation behavior can be studied and, thus, showcase the expressiveness, applicability, and flexibility of our methods. Using these methods, we present new aspects of navigational phenomena which ultimately help to better understand the multi-faceted characteristics of human navigation behavior." @default.
- W3140816503 created "2021-04-13" @default.
- W3140816503 creator A5060733666 @default.
- W3140816503 date "2018-01-01" @default.
- W3140816503 modified "2023-09-26" @default.
- W3140816503 title "Understanding Human Navigation using Bayesian Hypothesis Comparison" @default.
- W3140816503 hasPublicationYear "2018" @default.
- W3140816503 type Work @default.
- W3140816503 sameAs 3140816503 @default.
- W3140816503 citedByCount "0" @default.
- W3140816503 crossrefType "journal-article" @default.
- W3140816503 hasAuthorship W3140816503A5060733666 @default.
- W3140816503 hasConcept C107457646 @default.
- W3140816503 hasConcept C107673813 @default.
- W3140816503 hasConcept C111472728 @default.
- W3140816503 hasConcept C120665830 @default.
- W3140816503 hasConcept C121332964 @default.
- W3140816503 hasConcept C132010649 @default.
- W3140816503 hasConcept C138885662 @default.
- W3140816503 hasConcept C154945302 @default.
- W3140816503 hasConcept C15744967 @default.
- W3140816503 hasConcept C177264268 @default.
- W3140816503 hasConcept C192209626 @default.
- W3140816503 hasConcept C199360897 @default.
- W3140816503 hasConcept C23123220 @default.
- W3140816503 hasConcept C2522767166 @default.
- W3140816503 hasConcept C2780586970 @default.
- W3140816503 hasConcept C41008148 @default.
- W3140816503 hasConcept C77805123 @default.
- W3140816503 hasConceptScore W3140816503C107457646 @default.
- W3140816503 hasConceptScore W3140816503C107673813 @default.
- W3140816503 hasConceptScore W3140816503C111472728 @default.
- W3140816503 hasConceptScore W3140816503C120665830 @default.
- W3140816503 hasConceptScore W3140816503C121332964 @default.
- W3140816503 hasConceptScore W3140816503C132010649 @default.
- W3140816503 hasConceptScore W3140816503C138885662 @default.
- W3140816503 hasConceptScore W3140816503C154945302 @default.
- W3140816503 hasConceptScore W3140816503C15744967 @default.
- W3140816503 hasConceptScore W3140816503C177264268 @default.
- W3140816503 hasConceptScore W3140816503C192209626 @default.
- W3140816503 hasConceptScore W3140816503C199360897 @default.
- W3140816503 hasConceptScore W3140816503C23123220 @default.
- W3140816503 hasConceptScore W3140816503C2522767166 @default.
- W3140816503 hasConceptScore W3140816503C2780586970 @default.
- W3140816503 hasConceptScore W3140816503C41008148 @default.
- W3140816503 hasConceptScore W3140816503C77805123 @default.
- W3140816503 hasLocation W31408165031 @default.
- W3140816503 hasOpenAccess W3140816503 @default.
- W3140816503 hasPrimaryLocation W31408165031 @default.
- W3140816503 hasRelatedWork W100576170 @default.
- W3140816503 hasRelatedWork W1727484914 @default.
- W3140816503 hasRelatedWork W2033074184 @default.
- W3140816503 hasRelatedWork W2089120721 @default.
- W3140816503 hasRelatedWork W2128823334 @default.
- W3140816503 hasRelatedWork W2141168532 @default.
- W3140816503 hasRelatedWork W2188910196 @default.
- W3140816503 hasRelatedWork W2240953524 @default.
- W3140816503 hasRelatedWork W2294974725 @default.
- W3140816503 hasRelatedWork W236502443 @default.
- W3140816503 hasRelatedWork W2580269855 @default.
- W3140816503 hasRelatedWork W2897422894 @default.
- W3140816503 hasRelatedWork W2922262856 @default.
- W3140816503 hasRelatedWork W3030501723 @default.
- W3140816503 hasRelatedWork W3085029443 @default.
- W3140816503 hasRelatedWork W3100699829 @default.
- W3140816503 hasRelatedWork W3134000433 @default.
- W3140816503 hasRelatedWork W3196026007 @default.
- W3140816503 hasRelatedWork W2185442173 @default.
- W3140816503 hasRelatedWork W2244611874 @default.
- W3140816503 isParatext "false" @default.
- W3140816503 isRetracted "false" @default.
- W3140816503 magId "3140816503" @default.
- W3140816503 workType "article" @default.