Matches in SemOpenAlex for { <https://semopenalex.org/work/W3140875267> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W3140875267 endingPage "499" @default.
- W3140875267 startingPage "491" @default.
- W3140875267 abstract "The proposed work predicts the outcome of H1-B VISAS that are applied by professionals belonging to different fields. This VISA is applied on temporary basis and to specialized workers only. People with B-Tech degree or equivalent can apply for the VISA if the requisite skills are required by the employers of USA H1-B VISA has a time limit of 3 years but can be extended up to 6 years. Being one of the most sought-after VISAs, its approval rate is pretty low. In the year 2019, out of 200,000 applicants only 85,000 applications for the VISA got approved. So, the rate of approval is only 42%. On yearly basis, due to increase in competition, the approval rate of the VISA is getting stringent. There are several factors on which the selection rate of the VISA depends. For predicting the success rate of VISA approval, we have considered a proposed system that works on the data set downloaded from Kaggle.com. The data set is then converted to numerical form using some encoding schemes. We also build an ANN model and use this data set to train the model. If the output is 0, then the VISA application is rejected, and if the output is 1, then the VISA application is accepted. This paper predicts the success of an individual in obtaining H1-B VISA. The proposed system in this paper obtains an accuracy of 94% in predicting the success of H1-B VISA." @default.
- W3140875267 created "2021-04-13" @default.
- W3140875267 creator A5043276093 @default.
- W3140875267 creator A5062857034 @default.
- W3140875267 creator A5063869735 @default.
- W3140875267 date "2021-01-01" @default.
- W3140875267 modified "2023-09-25" @default.
- W3140875267 title "Success of H1-B VISA Using ANN" @default.
- W3140875267 cites W2169430165 @default.
- W3140875267 cites W2942124948 @default.
- W3140875267 cites W2946635840 @default.
- W3140875267 cites W2995394225 @default.
- W3140875267 cites W3006413286 @default.
- W3140875267 cites W3013549771 @default.
- W3140875267 cites W3034099097 @default.
- W3140875267 cites W3123811273 @default.
- W3140875267 doi "https://doi.org/10.1007/978-981-33-4859-2_48" @default.
- W3140875267 hasPublicationYear "2021" @default.
- W3140875267 type Work @default.
- W3140875267 sameAs 3140875267 @default.
- W3140875267 citedByCount "1" @default.
- W3140875267 countsByYear W31408752672021 @default.
- W3140875267 crossrefType "book-chapter" @default.
- W3140875267 hasAuthorship W3140875267A5043276093 @default.
- W3140875267 hasAuthorship W3140875267A5062857034 @default.
- W3140875267 hasAuthorship W3140875267A5063869735 @default.
- W3140875267 hasConcept C41008148 @default.
- W3140875267 hasConceptScore W3140875267C41008148 @default.
- W3140875267 hasLocation W31408752671 @default.
- W3140875267 hasOpenAccess W3140875267 @default.
- W3140875267 hasPrimaryLocation W31408752671 @default.
- W3140875267 hasRelatedWork W2093578348 @default.
- W3140875267 hasRelatedWork W2096946506 @default.
- W3140875267 hasRelatedWork W2350741829 @default.
- W3140875267 hasRelatedWork W2358668433 @default.
- W3140875267 hasRelatedWork W2376932109 @default.
- W3140875267 hasRelatedWork W2382290278 @default.
- W3140875267 hasRelatedWork W2390279801 @default.
- W3140875267 hasRelatedWork W2748952813 @default.
- W3140875267 hasRelatedWork W2766271392 @default.
- W3140875267 hasRelatedWork W2899084033 @default.
- W3140875267 isParatext "false" @default.
- W3140875267 isRetracted "false" @default.
- W3140875267 magId "3140875267" @default.
- W3140875267 workType "book-chapter" @default.