Matches in SemOpenAlex for { <https://semopenalex.org/work/W3141003216> ?p ?o ?g. }
- W3141003216 endingPage "213" @default.
- W3141003216 startingPage "206" @default.
- W3141003216 abstract "Aim: The present study is aimed to assess the segmentation success of an artificial intelligence (AI) system based on the deep convolutional neural network (D-CNN) method for the segmentation of masseter muscles on ultrasonography (USG) images. Materials and Methods: This retrospective study was carried out by using the radiology archive of the Department of Oral and Maxillofacial Radiology of the Faculty of Dentistry in Ankara University. A total of 195 anonymized USG images were used in this retrospective study. The deep learning process was performed using U-net, Pyramid Scene Parsing Network (PSPNet), and Fuzzy Petri Net (FPN) architectures. Muscle thickness was assessed using USG by manual segmentation and measurements using USG’s software. The neural network model (CranioCatch, Eskisehir-Turkey) was then used to determine the muscles, following automatic measurements of the muscles. Accuracy, ROC area under the curve (AUC), and Precision-Recall Curves (PRC) AUC were calculated in the test dataset and compare a human observer and the AI model. Manual segmentation and measurements were compared statistically with AI ( P < .05). The Mann–Whitney U test was used to analyze whether there is a statistically significant difference between the predicted values and the actual values. Results: The AI models detected and segmented all test muscle data for FPN and U-net, while only two cases of muscles were not detected by PSPNet (false negatives). Accuracies of FPN, PSPNet, and U-net were estimated as 0.985, 0.947, and 0.969, respectively. Receiver operating characteristic scores of FPN, PSPNet, and U-net were estimated as 0.977, 0.934, and 0.969, respectively. The D-CNN measurements of the muscles were similar to manual measurements. There was no significant difference between the two measurement methods in three groups ( P > .05). Conclusion: The proposed AI system approach for the analysis of USG images seems to be promising for automatic masseter muscle segmentation and measurement of thickness. This method can help surgeons, radiologists, and other professionals such as physical therapists in evaluating the time correctly and saving time for diagnosis." @default.
- W3141003216 created "2021-04-13" @default.
- W3141003216 creator A5003306637 @default.
- W3141003216 creator A5003685591 @default.
- W3141003216 creator A5017817178 @default.
- W3141003216 creator A5035747313 @default.
- W3141003216 creator A5046810190 @default.
- W3141003216 creator A5071464156 @default.
- W3141003216 date "2021-04-04" @default.
- W3141003216 modified "2023-09-25" @default.
- W3141003216 title "An Artificial Intelligence Hypothetical Approach for Masseter Muscle Segmentation on Ultrasonography in Patients With Bruxism" @default.
- W3141003216 cites W1965143091 @default.
- W3141003216 cites W1966625813 @default.
- W3141003216 cites W2010624390 @default.
- W3141003216 cites W2020662654 @default.
- W3141003216 cites W2042067755 @default.
- W3141003216 cites W2042241546 @default.
- W3141003216 cites W2052676117 @default.
- W3141003216 cites W2080115015 @default.
- W3141003216 cites W2087167643 @default.
- W3141003216 cites W2090280656 @default.
- W3141003216 cites W2111037708 @default.
- W3141003216 cites W2113328814 @default.
- W3141003216 cites W2130400238 @default.
- W3141003216 cites W2150887570 @default.
- W3141003216 cites W2237370019 @default.
- W3141003216 cites W2338526423 @default.
- W3141003216 cites W2540245109 @default.
- W3141003216 cites W2579386518 @default.
- W3141003216 cites W2586839650 @default.
- W3141003216 cites W2592765733 @default.
- W3141003216 cites W2595709438 @default.
- W3141003216 cites W2601700741 @default.
- W3141003216 cites W2617669016 @default.
- W3141003216 cites W2731899572 @default.
- W3141003216 cites W2733840449 @default.
- W3141003216 cites W2767236661 @default.
- W3141003216 cites W2783267265 @default.
- W3141003216 cites W2793251588 @default.
- W3141003216 cites W2803760365 @default.
- W3141003216 cites W2896760986 @default.
- W3141003216 cites W2905116258 @default.
- W3141003216 cites W2948196832 @default.
- W3141003216 cites W2965207724 @default.
- W3141003216 cites W2970449537 @default.
- W3141003216 cites W2999494042 @default.
- W3141003216 doi "https://doi.org/10.1177/23202068211005611" @default.
- W3141003216 hasPublicationYear "2021" @default.
- W3141003216 type Work @default.
- W3141003216 sameAs 3141003216 @default.
- W3141003216 citedByCount "1" @default.
- W3141003216 countsByYear W31410032162022 @default.
- W3141003216 crossrefType "journal-article" @default.
- W3141003216 hasAuthorship W3141003216A5003306637 @default.
- W3141003216 hasAuthorship W3141003216A5003685591 @default.
- W3141003216 hasAuthorship W3141003216A5017817178 @default.
- W3141003216 hasAuthorship W3141003216A5035747313 @default.
- W3141003216 hasAuthorship W3141003216A5046810190 @default.
- W3141003216 hasAuthorship W3141003216A5071464156 @default.
- W3141003216 hasConcept C108583219 @default.
- W3141003216 hasConcept C119857082 @default.
- W3141003216 hasConcept C126322002 @default.
- W3141003216 hasConcept C12868164 @default.
- W3141003216 hasConcept C153180895 @default.
- W3141003216 hasConcept C154945302 @default.
- W3141003216 hasConcept C41008148 @default.
- W3141003216 hasConcept C58471807 @default.
- W3141003216 hasConcept C71924100 @default.
- W3141003216 hasConcept C81363708 @default.
- W3141003216 hasConcept C89600930 @default.
- W3141003216 hasConceptScore W3141003216C108583219 @default.
- W3141003216 hasConceptScore W3141003216C119857082 @default.
- W3141003216 hasConceptScore W3141003216C126322002 @default.
- W3141003216 hasConceptScore W3141003216C12868164 @default.
- W3141003216 hasConceptScore W3141003216C153180895 @default.
- W3141003216 hasConceptScore W3141003216C154945302 @default.
- W3141003216 hasConceptScore W3141003216C41008148 @default.
- W3141003216 hasConceptScore W3141003216C58471807 @default.
- W3141003216 hasConceptScore W3141003216C71924100 @default.
- W3141003216 hasConceptScore W3141003216C81363708 @default.
- W3141003216 hasConceptScore W3141003216C89600930 @default.
- W3141003216 hasIssue "2" @default.
- W3141003216 hasLocation W31410032161 @default.
- W3141003216 hasOpenAccess W3141003216 @default.
- W3141003216 hasPrimaryLocation W31410032161 @default.
- W3141003216 hasRelatedWork W2732542196 @default.
- W3141003216 hasRelatedWork W2738221750 @default.
- W3141003216 hasRelatedWork W2971526870 @default.
- W3141003216 hasRelatedWork W2994948129 @default.
- W3141003216 hasRelatedWork W3102253946 @default.
- W3141003216 hasRelatedWork W3144574764 @default.
- W3141003216 hasRelatedWork W3156786002 @default.
- W3141003216 hasRelatedWork W4226289457 @default.
- W3141003216 hasRelatedWork W4293211451 @default.
- W3141003216 hasRelatedWork W4293511125 @default.
- W3141003216 hasVolume "12" @default.
- W3141003216 isParatext "false" @default.
- W3141003216 isRetracted "false" @default.