Matches in SemOpenAlex for { <https://semopenalex.org/work/W3141488594> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3141488594 abstract "There exists continuous demand of improved turbulence models for the closure of Reynolds Averaged Navier-Stokes (RANS) simulations. Machine Learning (ML) offers effective tools for establishing advanced empirical Reynolds stress closures on the basis of high fidelity simulation data. This paper presents a turbulence model based on the Deep Neural Network(DNN) which takes into account the non-linear relationship between the Reynolds stress anisotropy tensor and the local mean velocity gradient as well as the near-wall effect. The construction and the tuning of the DNN-turbulence model are detailed. We show that the DNN-turbulence model trained on data from direct numerical simulations yields an accurate prediction of the Reynolds stresses for plane channel flow. In particular, we propose including the local turbulence Reynolds number in the model input." @default.
- W3141488594 created "2021-04-13" @default.
- W3141488594 creator A5022499603 @default.
- W3141488594 creator A5034537695 @default.
- W3141488594 creator A5038491539 @default.
- W3141488594 date "2021-03-31" @default.
- W3141488594 modified "2023-09-24" @default.
- W3141488594 title "A turbulence model based on deep neural network considering the near-wall effect" @default.
- W3141488594 cites W1498436455 @default.
- W3141488594 cites W1677182931 @default.
- W3141488594 cites W1986648638 @default.
- W3141488594 cites W2055774530 @default.
- W3141488594 cites W2063300091 @default.
- W3141488594 cites W2072921737 @default.
- W3141488594 cites W2088385764 @default.
- W3141488594 cites W2105355027 @default.
- W3141488594 cites W2121221908 @default.
- W3141488594 cites W2144513243 @default.
- W3141488594 cites W2160815625 @default.
- W3141488594 cites W2319329301 @default.
- W3141488594 cites W2321807788 @default.
- W3141488594 cites W2534240011 @default.
- W3141488594 cites W2564800775 @default.
- W3141488594 cites W2745403120 @default.
- W3141488594 cites W2905258134 @default.
- W3141488594 cites W2919115771 @default.
- W3141488594 cites W2964121744 @default.
- W3141488594 cites W3102140816 @default.
- W3141488594 doi "https://doi.org/10.48550/arxiv.2103.16963" @default.
- W3141488594 hasPublicationYear "2021" @default.
- W3141488594 type Work @default.
- W3141488594 sameAs 3141488594 @default.
- W3141488594 citedByCount "0" @default.
- W3141488594 crossrefType "posted-content" @default.
- W3141488594 hasAuthorship W3141488594A5022499603 @default.
- W3141488594 hasAuthorship W3141488594A5034537695 @default.
- W3141488594 hasAuthorship W3141488594A5038491539 @default.
- W3141488594 hasBestOaLocation W31414885941 @default.
- W3141488594 hasConcept C121332964 @default.
- W3141488594 hasConcept C121864883 @default.
- W3141488594 hasConcept C146834321 @default.
- W3141488594 hasConcept C147196274 @default.
- W3141488594 hasConcept C150711758 @default.
- W3141488594 hasConcept C152846280 @default.
- W3141488594 hasConcept C15476950 @default.
- W3141488594 hasConcept C154945302 @default.
- W3141488594 hasConcept C162324750 @default.
- W3141488594 hasConcept C182748727 @default.
- W3141488594 hasConcept C189223162 @default.
- W3141488594 hasConcept C196558001 @default.
- W3141488594 hasConcept C204573209 @default.
- W3141488594 hasConcept C32526432 @default.
- W3141488594 hasConcept C33923547 @default.
- W3141488594 hasConcept C34447519 @default.
- W3141488594 hasConcept C41008148 @default.
- W3141488594 hasConcept C50644808 @default.
- W3141488594 hasConcept C57879066 @default.
- W3141488594 hasConcept C63931686 @default.
- W3141488594 hasConceptScore W3141488594C121332964 @default.
- W3141488594 hasConceptScore W3141488594C121864883 @default.
- W3141488594 hasConceptScore W3141488594C146834321 @default.
- W3141488594 hasConceptScore W3141488594C147196274 @default.
- W3141488594 hasConceptScore W3141488594C150711758 @default.
- W3141488594 hasConceptScore W3141488594C152846280 @default.
- W3141488594 hasConceptScore W3141488594C15476950 @default.
- W3141488594 hasConceptScore W3141488594C154945302 @default.
- W3141488594 hasConceptScore W3141488594C162324750 @default.
- W3141488594 hasConceptScore W3141488594C182748727 @default.
- W3141488594 hasConceptScore W3141488594C189223162 @default.
- W3141488594 hasConceptScore W3141488594C196558001 @default.
- W3141488594 hasConceptScore W3141488594C204573209 @default.
- W3141488594 hasConceptScore W3141488594C32526432 @default.
- W3141488594 hasConceptScore W3141488594C33923547 @default.
- W3141488594 hasConceptScore W3141488594C34447519 @default.
- W3141488594 hasConceptScore W3141488594C41008148 @default.
- W3141488594 hasConceptScore W3141488594C50644808 @default.
- W3141488594 hasConceptScore W3141488594C57879066 @default.
- W3141488594 hasConceptScore W3141488594C63931686 @default.
- W3141488594 hasLocation W31414885941 @default.
- W3141488594 hasOpenAccess W3141488594 @default.
- W3141488594 hasPrimaryLocation W31414885941 @default.
- W3141488594 hasRelatedWork W114150630 @default.
- W3141488594 hasRelatedWork W1975241286 @default.
- W3141488594 hasRelatedWork W2010088633 @default.
- W3141488594 hasRelatedWork W2042057193 @default.
- W3141488594 hasRelatedWork W2065632449 @default.
- W3141488594 hasRelatedWork W2071004471 @default.
- W3141488594 hasRelatedWork W2127009557 @default.
- W3141488594 hasRelatedWork W2380338678 @default.
- W3141488594 hasRelatedWork W3141488594 @default.
- W3141488594 hasRelatedWork W2030677410 @default.
- W3141488594 isParatext "false" @default.
- W3141488594 isRetracted "false" @default.
- W3141488594 magId "3141488594" @default.
- W3141488594 workType "article" @default.