Matches in SemOpenAlex for { <https://semopenalex.org/work/W3141513209> ?p ?o ?g. }
- W3141513209 endingPage "002203452110053" @default.
- W3141513209 startingPage "002203452110053" @default.
- W3141513209 abstract "Accurate segmentation of the jaw (i.e., mandible and maxilla) and the teeth in cone beam computed tomography (CBCT) scans is essential for orthodontic diagnosis and treatment planning. Although various (semi)automated methods have been proposed to segment the jaw or the teeth, there is still a lack of fully automated segmentation methods that can simultaneously segment both anatomic structures in CBCT scans (i.e., multiclass segmentation). In this study, we aimed to train and validate a mixed-scale dense (MS-D) convolutional neural network for multiclass segmentation of the jaw, the teeth, and the background in CBCT scans. Thirty CBCT scans were obtained from patients who had undergone orthodontic treatment. Gold standard segmentation labels were manually created by 4 dentists. As a benchmark, we also evaluated MS-D networks that segmented the jaw or the teeth (i.e., binary segmentation). All segmented CBCT scans were converted to virtual 3-dimensional (3D) models. The segmentation performance of all trained MS-D networks was assessed by the Dice similarity coefficient and surface deviation. The CBCT scans segmented by the MS-D network demonstrated a large overlap with the gold standard segmentations (Dice similarity coefficient: 0.934 ± 0.019, jaw; 0.945 ± 0.021, teeth). The MS-D network–based 3D models of the jaw and the teeth showed minor surface deviations when compared with the corresponding gold standard 3D models (0.390 ± 0.093 mm, jaw; 0.204 ± 0.061 mm, teeth). The MS-D network took approximately 25 s to segment 1 CBCT scan, whereas manual segmentation took about 5 h. This study showed that multiclass segmentation of jaw and teeth was accurate and its performance was comparable to binary segmentation. The MS-D network trained for multiclass segmentation would therefore make patient-specific orthodontic treatment more feasible by strongly reducing the time required to segment multiple anatomic structures in CBCT scans." @default.
- W3141513209 created "2021-04-13" @default.
- W3141513209 creator A5010115774 @default.
- W3141513209 creator A5034236256 @default.
- W3141513209 creator A5067948858 @default.
- W3141513209 creator A5071026235 @default.
- W3141513209 creator A5076588623 @default.
- W3141513209 creator A5081549181 @default.
- W3141513209 date "2021-03-30" @default.
- W3141513209 modified "2023-10-06" @default.
- W3141513209 title "Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning" @default.
- W3141513209 cites W1993947467 @default.
- W3141513209 cites W2140972007 @default.
- W3141513209 cites W2166018620 @default.
- W3141513209 cites W2206910287 @default.
- W3141513209 cites W2215273914 @default.
- W3141513209 cites W2316247010 @default.
- W3141513209 cites W2592929672 @default.
- W3141513209 cites W2766463156 @default.
- W3141513209 cites W2776265614 @default.
- W3141513209 cites W2885112059 @default.
- W3141513209 cites W2889217150 @default.
- W3141513209 cites W2889245115 @default.
- W3141513209 cites W2895089584 @default.
- W3141513209 cites W2897772195 @default.
- W3141513209 cites W2910954186 @default.
- W3141513209 cites W2955353723 @default.
- W3141513209 cites W2958150439 @default.
- W3141513209 cites W2968371079 @default.
- W3141513209 cites W2970357141 @default.
- W3141513209 cites W2970377182 @default.
- W3141513209 cites W2971102452 @default.
- W3141513209 cites W2981074595 @default.
- W3141513209 cites W3007034888 @default.
- W3141513209 cites W3016417837 @default.
- W3141513209 cites W3021337333 @default.
- W3141513209 cites W3022602416 @default.
- W3141513209 cites W4244958615 @default.
- W3141513209 doi "https://doi.org/10.1177/00220345211005338" @default.
- W3141513209 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8293763" @default.
- W3141513209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33783247" @default.
- W3141513209 hasPublicationYear "2021" @default.
- W3141513209 type Work @default.
- W3141513209 sameAs 3141513209 @default.
- W3141513209 citedByCount "55" @default.
- W3141513209 countsByYear W31415132092021 @default.
- W3141513209 countsByYear W31415132092022 @default.
- W3141513209 countsByYear W31415132092023 @default.
- W3141513209 crossrefType "journal-article" @default.
- W3141513209 hasAuthorship W3141513209A5010115774 @default.
- W3141513209 hasAuthorship W3141513209A5034236256 @default.
- W3141513209 hasAuthorship W3141513209A5067948858 @default.
- W3141513209 hasAuthorship W3141513209A5071026235 @default.
- W3141513209 hasAuthorship W3141513209A5076588623 @default.
- W3141513209 hasAuthorship W3141513209A5081549181 @default.
- W3141513209 hasBestOaLocation W31415132091 @default.
- W3141513209 hasConcept C105795698 @default.
- W3141513209 hasConcept C124504099 @default.
- W3141513209 hasConcept C126838900 @default.
- W3141513209 hasConcept C154945302 @default.
- W3141513209 hasConcept C163892561 @default.
- W3141513209 hasConcept C22679943 @default.
- W3141513209 hasConcept C2779813781 @default.
- W3141513209 hasConcept C29694066 @default.
- W3141513209 hasConcept C33923547 @default.
- W3141513209 hasConcept C40993552 @default.
- W3141513209 hasConcept C41008148 @default.
- W3141513209 hasConcept C544519230 @default.
- W3141513209 hasConcept C71924100 @default.
- W3141513209 hasConcept C81363708 @default.
- W3141513209 hasConcept C89600930 @default.
- W3141513209 hasConceptScore W3141513209C105795698 @default.
- W3141513209 hasConceptScore W3141513209C124504099 @default.
- W3141513209 hasConceptScore W3141513209C126838900 @default.
- W3141513209 hasConceptScore W3141513209C154945302 @default.
- W3141513209 hasConceptScore W3141513209C163892561 @default.
- W3141513209 hasConceptScore W3141513209C22679943 @default.
- W3141513209 hasConceptScore W3141513209C2779813781 @default.
- W3141513209 hasConceptScore W3141513209C29694066 @default.
- W3141513209 hasConceptScore W3141513209C33923547 @default.
- W3141513209 hasConceptScore W3141513209C40993552 @default.
- W3141513209 hasConceptScore W3141513209C41008148 @default.
- W3141513209 hasConceptScore W3141513209C544519230 @default.
- W3141513209 hasConceptScore W3141513209C71924100 @default.
- W3141513209 hasConceptScore W3141513209C81363708 @default.
- W3141513209 hasConceptScore W3141513209C89600930 @default.
- W3141513209 hasFunder F4320321800 @default.
- W3141513209 hasLocation W31415132091 @default.
- W3141513209 hasLocation W31415132092 @default.
- W3141513209 hasLocation W31415132093 @default.
- W3141513209 hasOpenAccess W3141513209 @default.
- W3141513209 hasPrimaryLocation W31415132091 @default.
- W3141513209 hasRelatedWork W2138214894 @default.
- W3141513209 hasRelatedWork W2564554248 @default.
- W3141513209 hasRelatedWork W2769435486 @default.
- W3141513209 hasRelatedWork W2948809999 @default.
- W3141513209 hasRelatedWork W2999580839 @default.
- W3141513209 hasRelatedWork W3027394838 @default.