Matches in SemOpenAlex for { <https://semopenalex.org/work/W3141513948> ?p ?o ?g. }
- W3141513948 endingPage "107380" @default.
- W3141513948 startingPage "107380" @default.
- W3141513948 abstract "In this paper, we present a new global optimization algorithm SGOP for computationally intensive black-box problems. Considering that multiple surrogates concurrently used in an optimization process can have more robust performance in most cases, a Pareto-based multi-point sampling strategy is presented to improve iterative efficiency. Ideally, a group of samples having best predictive values on all the surrogates and meanwhile keeping better space-filling feature are most appropriate to be selected in each cycle. Therefore, a four-objective optimization formula is presented, where Kriging, radial basis function, quadratic response surface and a sampling density function are defined as objective functions, respectively. The non-dominated sorting strategy is used to capture the Pareto solutions of the multi-objective problem and the new promising samples are adaptively chosen from their Pareto solutions set to drive the optimization cycle. Moreover, a dynamic monitor is presented to check the premature convergence. Once the trigger is activated, the search will focus on unexplored area. SGOP can not only build a reasonable balance between global exploration and local exploitation, but also has remarkable advantages in sampling efficiency. Finally, the new algorithm is tested on 17 benchmark cases and compared with several existing algorithms. The results show SGOP’s superior performance and strong robustness. Besides, SGOP is used for the shape optimization of a blended-wing-body underwater glider (BWBUG), and the lift–drag-ratio gets remarkable improvement." @default.
- W3141513948 created "2021-04-13" @default.
- W3141513948 creator A5001470068 @default.
- W3141513948 creator A5010313033 @default.
- W3141513948 creator A5022219468 @default.
- W3141513948 creator A5069193330 @default.
- W3141513948 date "2021-07-01" @default.
- W3141513948 modified "2023-10-18" @default.
- W3141513948 title "SGOP: Surrogate-assisted global optimization using a Pareto-based sampling strategy" @default.
- W3141513948 cites W1510052597 @default.
- W3141513948 cites W1539732147 @default.
- W3141513948 cites W1573878755 @default.
- W3141513948 cites W1596717185 @default.
- W3141513948 cites W1786686177 @default.
- W3141513948 cites W1981270896 @default.
- W3141513948 cites W1988696933 @default.
- W3141513948 cites W1988945200 @default.
- W3141513948 cites W1999284878 @default.
- W3141513948 cites W2013695155 @default.
- W3141513948 cites W2047094503 @default.
- W3141513948 cites W2048711666 @default.
- W3141513948 cites W2049743496 @default.
- W3141513948 cites W2057215055 @default.
- W3141513948 cites W2061438946 @default.
- W3141513948 cites W2064075929 @default.
- W3141513948 cites W2065145327 @default.
- W3141513948 cites W2095769364 @default.
- W3141513948 cites W2156194072 @default.
- W3141513948 cites W2229695689 @default.
- W3141513948 cites W2332048260 @default.
- W3141513948 cites W2335942837 @default.
- W3141513948 cites W2382210627 @default.
- W3141513948 cites W2485514315 @default.
- W3141513948 cites W2527771322 @default.
- W3141513948 cites W2558052401 @default.
- W3141513948 cites W2595987870 @default.
- W3141513948 cites W2606621113 @default.
- W3141513948 cites W2762742239 @default.
- W3141513948 cites W2771956509 @default.
- W3141513948 cites W2792426815 @default.
- W3141513948 cites W2806266970 @default.
- W3141513948 cites W2884604441 @default.
- W3141513948 cites W2894693699 @default.
- W3141513948 cites W2896438889 @default.
- W3141513948 cites W2896796166 @default.
- W3141513948 cites W2921524634 @default.
- W3141513948 cites W2944410534 @default.
- W3141513948 cites W2968167103 @default.
- W3141513948 cites W2978920835 @default.
- W3141513948 cites W4247680473 @default.
- W3141513948 doi "https://doi.org/10.1016/j.asoc.2021.107380" @default.
- W3141513948 hasPublicationYear "2021" @default.
- W3141513948 type Work @default.
- W3141513948 sameAs 3141513948 @default.
- W3141513948 citedByCount "11" @default.
- W3141513948 countsByYear W31415139482021 @default.
- W3141513948 countsByYear W31415139482022 @default.
- W3141513948 countsByYear W31415139482023 @default.
- W3141513948 crossrefType "journal-article" @default.
- W3141513948 hasAuthorship W3141513948A5001470068 @default.
- W3141513948 hasAuthorship W3141513948A5010313033 @default.
- W3141513948 hasAuthorship W3141513948A5022219468 @default.
- W3141513948 hasAuthorship W3141513948A5069193330 @default.
- W3141513948 hasConcept C104317684 @default.
- W3141513948 hasConcept C106131492 @default.
- W3141513948 hasConcept C111696304 @default.
- W3141513948 hasConcept C11413529 @default.
- W3141513948 hasConcept C119857082 @default.
- W3141513948 hasConcept C126255220 @default.
- W3141513948 hasConcept C13280743 @default.
- W3141513948 hasConcept C137635306 @default.
- W3141513948 hasConcept C140779682 @default.
- W3141513948 hasConcept C164752517 @default.
- W3141513948 hasConcept C185592680 @default.
- W3141513948 hasConcept C185798385 @default.
- W3141513948 hasConcept C205649164 @default.
- W3141513948 hasConcept C31972630 @default.
- W3141513948 hasConcept C33923547 @default.
- W3141513948 hasConcept C41008148 @default.
- W3141513948 hasConcept C55493867 @default.
- W3141513948 hasConcept C63479239 @default.
- W3141513948 hasConcept C68781425 @default.
- W3141513948 hasConcept C81692654 @default.
- W3141513948 hasConceptScore W3141513948C104317684 @default.
- W3141513948 hasConceptScore W3141513948C106131492 @default.
- W3141513948 hasConceptScore W3141513948C111696304 @default.
- W3141513948 hasConceptScore W3141513948C11413529 @default.
- W3141513948 hasConceptScore W3141513948C119857082 @default.
- W3141513948 hasConceptScore W3141513948C126255220 @default.
- W3141513948 hasConceptScore W3141513948C13280743 @default.
- W3141513948 hasConceptScore W3141513948C137635306 @default.
- W3141513948 hasConceptScore W3141513948C140779682 @default.
- W3141513948 hasConceptScore W3141513948C164752517 @default.
- W3141513948 hasConceptScore W3141513948C185592680 @default.
- W3141513948 hasConceptScore W3141513948C185798385 @default.
- W3141513948 hasConceptScore W3141513948C205649164 @default.
- W3141513948 hasConceptScore W3141513948C31972630 @default.
- W3141513948 hasConceptScore W3141513948C33923547 @default.