Matches in SemOpenAlex for { <https://semopenalex.org/work/W3141526526> ?p ?o ?g. }
- W3141526526 endingPage "2181" @default.
- W3141526526 startingPage "2163" @default.
- W3141526526 abstract "Quantification learning is the task of prevalence estimation for a test population using predictions from a classifier trained on a different population. Quantification methods assume that the sensitivities and specificities of the classifier are either perfect or transportable from the training to the test population. These assumptions are inappropriate in the presence of dataset shift, when the misclassification rates in the training population are not representative of those for the test population. Quantification under dataset shift has been addressed only for single-class (categorical) predictions and assuming perfect knowledge of the true labels on a small subset of the test population. We propose generalized Bayes quantification learning (GBQL) that uses the entire compositional predictions from probabilistic classifiers and allows for uncertainty in true class labels for the limited labeled test data. Instead of positing a full model, we use a model-free Bayesian estimating equation approach to compositional data using Kullback–Leibler loss-functions based only on a first-moment assumption. The idea will be useful in Bayesian compositional data analysis in general as it is robust to different generating mechanisms for compositional data and allows 0’s and 1’s in the compositional outputs thereby including categorical outputs as a special case. We show how our method yields existing quantification approaches as special cases. Extension to an ensemble GBQL that uses predictions from multiple classifiers yielding inference robust to inclusion of a poor classifier is discussed. We outline a fast and efficient Gibbs sampler using a rounding and coarsening approximation to the loss functions. We establish posterior consistency, asymptotic normality and valid coverage of interval estimates from GBQL, which to our knowledge are the first theoretical results for a quantification approach in the presence of local labeled data. We also establish finite sample posterior concentration rate. Empirical performance of GBQL is demonstrated through simulations and analysis of real data with evident dataset shift. Supplementary materials for this article are available online." @default.
- W3141526526 created "2021-04-13" @default.
- W3141526526 creator A5000535536 @default.
- W3141526526 creator A5000968299 @default.
- W3141526526 creator A5039416459 @default.
- W3141526526 creator A5073353959 @default.
- W3141526526 date "2021-05-04" @default.
- W3141526526 modified "2023-10-16" @default.
- W3141526526 title "Generalized Bayes Quantification Learning under Dataset Shift" @default.
- W3141526526 cites W1488030573 @default.
- W3141526526 cites W1573900212 @default.
- W3141526526 cites W1760646631 @default.
- W3141526526 cites W1844985714 @default.
- W3141526526 cites W186151502 @default.
- W3141526526 cites W1917678430 @default.
- W3141526526 cites W1964168965 @default.
- W3141526526 cites W1972047492 @default.
- W3141526526 cites W1974567587 @default.
- W3141526526 cites W1998281631 @default.
- W3141526526 cites W2015506353 @default.
- W3141526526 cites W2028138594 @default.
- W3141526526 cites W2058220245 @default.
- W3141526526 cites W2062714872 @default.
- W3141526526 cites W2063408601 @default.
- W3141526526 cites W2068993558 @default.
- W3141526526 cites W2086333522 @default.
- W3141526526 cites W2090050657 @default.
- W3141526526 cites W2094015288 @default.
- W3141526526 cites W2094971407 @default.
- W3141526526 cites W2096675833 @default.
- W3141526526 cites W2099878672 @default.
- W3141526526 cites W2123846587 @default.
- W3141526526 cites W2133919899 @default.
- W3141526526 cites W2149860264 @default.
- W3141526526 cites W2158243283 @default.
- W3141526526 cites W2165429502 @default.
- W3141526526 cites W2171060319 @default.
- W3141526526 cites W2172116597 @default.
- W3141526526 cites W2175727069 @default.
- W3141526526 cites W2195279081 @default.
- W3141526526 cites W2342355650 @default.
- W3141526526 cites W2462290672 @default.
- W3141526526 cites W2560068110 @default.
- W3141526526 cites W2619335752 @default.
- W3141526526 cites W2757560572 @default.
- W3141526526 cites W2782666904 @default.
- W3141526526 cites W2784045057 @default.
- W3141526526 cites W2811198907 @default.
- W3141526526 cites W2910705751 @default.
- W3141526526 cites W2962894765 @default.
- W3141526526 cites W2963495973 @default.
- W3141526526 cites W2964191999 @default.
- W3141526526 cites W3099663651 @default.
- W3141526526 cites W3121290475 @default.
- W3141526526 cites W3122896559 @default.
- W3141526526 cites W3123899751 @default.
- W3141526526 cites W4244569433 @default.
- W3141526526 cites W4248175720 @default.
- W3141526526 cites W4301861531 @default.
- W3141526526 doi "https://doi.org/10.1080/01621459.2021.1909599" @default.
- W3141526526 hasPublicationYear "2021" @default.
- W3141526526 type Work @default.
- W3141526526 sameAs 3141526526 @default.
- W3141526526 citedByCount "6" @default.
- W3141526526 countsByYear W31415265262020 @default.
- W3141526526 countsByYear W31415265262021 @default.
- W3141526526 countsByYear W31415265262022 @default.
- W3141526526 crossrefType "journal-article" @default.
- W3141526526 hasAuthorship W3141526526A5000535536 @default.
- W3141526526 hasAuthorship W3141526526A5000968299 @default.
- W3141526526 hasAuthorship W3141526526A5039416459 @default.
- W3141526526 hasAuthorship W3141526526A5073353959 @default.
- W3141526526 hasBestOaLocation W31415265261 @default.
- W3141526526 hasConcept C107673813 @default.
- W3141526526 hasConcept C119857082 @default.
- W3141526526 hasConcept C12267149 @default.
- W3141526526 hasConcept C144024400 @default.
- W3141526526 hasConcept C149923435 @default.
- W3141526526 hasConcept C153180895 @default.
- W3141526526 hasConcept C154945302 @default.
- W3141526526 hasConcept C16910744 @default.
- W3141526526 hasConcept C189119545 @default.
- W3141526526 hasConcept C199360897 @default.
- W3141526526 hasConcept C207201462 @default.
- W3141526526 hasConcept C2776214188 @default.
- W3141526526 hasConcept C2908647359 @default.
- W3141526526 hasConcept C33923547 @default.
- W3141526526 hasConcept C41008148 @default.
- W3141526526 hasConcept C49937458 @default.
- W3141526526 hasConcept C52001869 @default.
- W3141526526 hasConcept C5274069 @default.
- W3141526526 hasConcept C95623464 @default.
- W3141526526 hasConceptScore W3141526526C107673813 @default.
- W3141526526 hasConceptScore W3141526526C119857082 @default.
- W3141526526 hasConceptScore W3141526526C12267149 @default.
- W3141526526 hasConceptScore W3141526526C144024400 @default.
- W3141526526 hasConceptScore W3141526526C149923435 @default.
- W3141526526 hasConceptScore W3141526526C153180895 @default.