Matches in SemOpenAlex for { <https://semopenalex.org/work/W3141845865> ?p ?o ?g. }
- W3141845865 endingPage "3191" @default.
- W3141845865 startingPage "3161" @default.
- W3141845865 abstract "Type 2 diabetes is a chronic disease that affects millions of Americans and puts a significant burden on the healthcare system. The medical community sees screening patients to identify and treat prediabetes and diabetes early as an important goal; however, universal population screening is operationally not feasible, and screening policies need to take characteristics of the patient population into account. For instance, the screening policy for a population in an affluent neighborhood may differ from that of a safety‐net hospital. The problem of optimal diabetes screening—whom to screen and when to screen—is clearly important, and small improvements could have an enormous impact. However, the problem is typically only discussed from a practical viewpoint in the medical literature; a thorough theoretical framework from an operational viewpoint is largely missing. In this study, we propose an approach that builds on multiple methods—partially observable Markov decision process (POMDP), hidden Markov model (HMM), and predictive risk modeling (PRM). It uses available clinical information, in the form of electronic health records (EHRs), on specific patient populations to derive an optimal policy, which is used to generate screening decisions, individualized for each patient. The POMDP model, used for determining optimal decisions, lies at the core of our approach. We use HMM to estimate the cohort‐specific progression of diabetes (i.e., transition probability matrix) and the emission matrix. We use PRM to generate observations—in the form of individualized risk scores—for the POMDP. Both HMM and PRM are learned from EHR data. Our approach is unique because (i) it introduces a novel way of incorporating predictive modeling into a formal decision framework to derive an optimal screening policy; and (ii) it is based on real clinical data. We fit our model using data on a cohort of more than 60,000 patients over 5 years from a large safety‐net health system and then demonstrate the model's utility by conducting a simulation study. The results indicate that our proposed screening policy outperforms existing guidelines widely used in clinical practice. Our estimates suggest that implementing our policy for the studied cohort would add one quality‐adjusted life year for every patient, and at a cost that is 35% lower, compared with existing guidelines. Our proposed framework is generalizable to other chronic diseases, such as cancer and HIV." @default.
- W3141845865 created "2021-04-13" @default.
- W3141845865 creator A5027377977 @default.
- W3141845865 creator A5032045161 @default.
- W3141845865 creator A5061741697 @default.
- W3141845865 creator A5068885210 @default.
- W3141845865 date "2021-06-11" @default.
- W3141845865 modified "2023-10-11" @default.
- W3141845865 title "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening" @default.
- W3141845865 cites W1512432123 @default.
- W3141845865 cites W1964658802 @default.
- W3141845865 cites W1993833868 @default.
- W3141845865 cites W1998150031 @default.
- W3141845865 cites W1999802986 @default.
- W3141845865 cites W2000414007 @default.
- W3141845865 cites W2003691671 @default.
- W3141845865 cites W2009426114 @default.
- W3141845865 cites W2015764049 @default.
- W3141845865 cites W2016271967 @default.
- W3141845865 cites W2034725503 @default.
- W3141845865 cites W2037554409 @default.
- W3141845865 cites W2044864388 @default.
- W3141845865 cites W2056754897 @default.
- W3141845865 cites W2058056848 @default.
- W3141845865 cites W2059584761 @default.
- W3141845865 cites W2060514964 @default.
- W3141845865 cites W2075317666 @default.
- W3141845865 cites W2084049865 @default.
- W3141845865 cites W2101393389 @default.
- W3141845865 cites W2102171609 @default.
- W3141845865 cites W2105429583 @default.
- W3141845865 cites W2115098571 @default.
- W3141845865 cites W2116049533 @default.
- W3141845865 cites W2118977847 @default.
- W3141845865 cites W2126135055 @default.
- W3141845865 cites W2126972465 @default.
- W3141845865 cites W2132708603 @default.
- W3141845865 cites W2137861835 @default.
- W3141845865 cites W2138207304 @default.
- W3141845865 cites W2139265932 @default.
- W3141845865 cites W2140402600 @default.
- W3141845865 cites W2149982189 @default.
- W3141845865 cites W2151413732 @default.
- W3141845865 cites W2156458610 @default.
- W3141845865 cites W2158698691 @default.
- W3141845865 cites W2161208225 @default.
- W3141845865 cites W2163109667 @default.
- W3141845865 cites W2163808938 @default.
- W3141845865 cites W2164631067 @default.
- W3141845865 cites W2177271944 @default.
- W3141845865 cites W2302343385 @default.
- W3141845865 cites W2332951586 @default.
- W3141845865 cites W2411132500 @default.
- W3141845865 cites W2470208019 @default.
- W3141845865 cites W2520802678 @default.
- W3141845865 cites W2560629614 @default.
- W3141845865 cites W2581819314 @default.
- W3141845865 cites W2592957971 @default.
- W3141845865 cites W2602162614 @default.
- W3141845865 cites W2735721680 @default.
- W3141845865 cites W2793478514 @default.
- W3141845865 cites W2804104831 @default.
- W3141845865 cites W2804733334 @default.
- W3141845865 cites W2804799959 @default.
- W3141845865 cites W2896681158 @default.
- W3141845865 cites W2897334388 @default.
- W3141845865 cites W3092065440 @default.
- W3141845865 cites W3122954206 @default.
- W3141845865 cites W4236251890 @default.
- W3141845865 cites W4251966062 @default.
- W3141845865 cites W4253137802 @default.
- W3141845865 cites W4294541781 @default.
- W3141845865 doi "https://doi.org/10.1111/poms.13422" @default.
- W3141845865 hasPublicationYear "2021" @default.
- W3141845865 type Work @default.
- W3141845865 sameAs 3141845865 @default.
- W3141845865 citedByCount "5" @default.
- W3141845865 countsByYear W31418458652022 @default.
- W3141845865 countsByYear W31418458652023 @default.
- W3141845865 crossrefType "journal-article" @default.
- W3141845865 hasAuthorship W3141845865A5027377977 @default.
- W3141845865 hasAuthorship W3141845865A5032045161 @default.
- W3141845865 hasAuthorship W3141845865A5061741697 @default.
- W3141845865 hasAuthorship W3141845865A5068885210 @default.
- W3141845865 hasConcept C105795698 @default.
- W3141845865 hasConcept C106189395 @default.
- W3141845865 hasConcept C112930515 @default.
- W3141845865 hasConcept C119857082 @default.
- W3141845865 hasConcept C134018914 @default.
- W3141845865 hasConcept C154945302 @default.
- W3141845865 hasConcept C159886148 @default.
- W3141845865 hasConcept C160735492 @default.
- W3141845865 hasConcept C162324750 @default.
- W3141845865 hasConcept C163836022 @default.
- W3141845865 hasConcept C17098449 @default.
- W3141845865 hasConcept C23224414 @default.
- W3141845865 hasConcept C2777180221 @default.
- W3141845865 hasConcept C2779668308 @default.