Matches in SemOpenAlex for { <https://semopenalex.org/work/W3141927404> ?p ?o ?g. }
- W3141927404 endingPage "14" @default.
- W3141927404 startingPage "1" @default.
- W3141927404 abstract "This article proposes a hierarchical approximate-factor approach to analyzing high-dimensional, large-scale heterogeneous time series data using distributed computing. The new method employs a multiple-fold dimension reduction procedure using Principal Component Analysis (PCA) and shows great promises for modeling large-scale data that cannot be stored nor analyzed by a single machine. Each computer at the basic level performs a PCA to extract common factors among the time series assigned to it and transfers those factors to one and only one node of the second level. Each second-level computer collects the common factors from its subordinates and performs another PCA to select the second-level common factors. This process is repeated until the central server is reached, which collects factors from its direct subordinates and performs a final PCA to select the global common factors. The noise terms of the second-level approximate factor model are the unique common factors of the first-level clusters. We focus on the case of two levels in our theoretical derivations, but the idea can easily be generalized to any finite number of hierarchies, and the proposed method is also applicable to data with heterogeneous and multilevel subcluster structures that are stored and analyzed by a single machine. We introduce a new diffusion index approach to forecasting based on the global and group-specific factors. Some clustering methods are discussed in the supplement when the group memberships are unknown. We further extend the analysis to unit-root nonstationary time series. Asymptotic properties of the proposed method are derived for the diverging dimension of the data in each computing unit and the sample size T. We use both simulated and real examples to assess the performance of the proposed method in finite samples, and compare our method with the commonly used ones in the literature concerning the forecasting ability of extracted factors. Supplementary materials for this article are available online." @default.
- W3141927404 created "2021-04-13" @default.
- W3141927404 creator A5033579806 @default.
- W3141927404 creator A5047683819 @default.
- W3141927404 date "2022-05-27" @default.
- W3141927404 modified "2023-09-25" @default.
- W3141927404 title "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data" @default.
- W3141927404 cites W1593060747 @default.
- W3141927404 cites W1986932170 @default.
- W3141927404 cites W1989672512 @default.
- W3141927404 cites W2010681793 @default.
- W3141927404 cites W2014165366 @default.
- W3141927404 cites W2018199316 @default.
- W3141927404 cites W2038386801 @default.
- W3141927404 cites W2038395331 @default.
- W3141927404 cites W2038601479 @default.
- W3141927404 cites W2040373108 @default.
- W3141927404 cites W2066315659 @default.
- W3141927404 cites W2070173743 @default.
- W3141927404 cites W2076757480 @default.
- W3141927404 cites W2079563517 @default.
- W3141927404 cites W2110285888 @default.
- W3141927404 cites W2138019504 @default.
- W3141927404 cites W2142535750 @default.
- W3141927404 cites W2145134598 @default.
- W3141927404 cites W2157678754 @default.
- W3141927404 cites W2159706540 @default.
- W3141927404 cites W2162328283 @default.
- W3141927404 cites W2238789025 @default.
- W3141927404 cites W2892224330 @default.
- W3141927404 cites W2896498835 @default.
- W3141927404 cites W2921720134 @default.
- W3141927404 cites W2950126918 @default.
- W3141927404 cites W2963126228 @default.
- W3141927404 cites W2963788280 @default.
- W3141927404 cites W2964115906 @default.
- W3141927404 cites W2982674132 @default.
- W3141927404 cites W3003783990 @default.
- W3141927404 cites W3021406874 @default.
- W3141927404 cites W3123602744 @default.
- W3141927404 cites W3125070724 @default.
- W3141927404 cites W3125714952 @default.
- W3141927404 doi "https://doi.org/10.1080/01621459.2022.2071279" @default.
- W3141927404 hasPublicationYear "2022" @default.
- W3141927404 type Work @default.
- W3141927404 sameAs 3141927404 @default.
- W3141927404 citedByCount "1" @default.
- W3141927404 countsByYear W31419274042023 @default.
- W3141927404 crossrefType "journal-article" @default.
- W3141927404 hasAuthorship W3141927404A5033579806 @default.
- W3141927404 hasAuthorship W3141927404A5047683819 @default.
- W3141927404 hasBestOaLocation W31419274042 @default.
- W3141927404 hasConcept C10879293 @default.
- W3141927404 hasConcept C111919701 @default.
- W3141927404 hasConcept C11413529 @default.
- W3141927404 hasConcept C119857082 @default.
- W3141927404 hasConcept C121332964 @default.
- W3141927404 hasConcept C124101348 @default.
- W3141927404 hasConcept C143724316 @default.
- W3141927404 hasConcept C151406439 @default.
- W3141927404 hasConcept C151730666 @default.
- W3141927404 hasConcept C154945302 @default.
- W3141927404 hasConcept C199360897 @default.
- W3141927404 hasConcept C202444582 @default.
- W3141927404 hasConcept C27438332 @default.
- W3141927404 hasConcept C2778755073 @default.
- W3141927404 hasConcept C2781039887 @default.
- W3141927404 hasConcept C33676613 @default.
- W3141927404 hasConcept C33923547 @default.
- W3141927404 hasConcept C41008148 @default.
- W3141927404 hasConcept C62520636 @default.
- W3141927404 hasConcept C70518039 @default.
- W3141927404 hasConcept C71559656 @default.
- W3141927404 hasConcept C73555534 @default.
- W3141927404 hasConcept C86803240 @default.
- W3141927404 hasConcept C92835128 @default.
- W3141927404 hasConcept C98045186 @default.
- W3141927404 hasConceptScore W3141927404C10879293 @default.
- W3141927404 hasConceptScore W3141927404C111919701 @default.
- W3141927404 hasConceptScore W3141927404C11413529 @default.
- W3141927404 hasConceptScore W3141927404C119857082 @default.
- W3141927404 hasConceptScore W3141927404C121332964 @default.
- W3141927404 hasConceptScore W3141927404C124101348 @default.
- W3141927404 hasConceptScore W3141927404C143724316 @default.
- W3141927404 hasConceptScore W3141927404C151406439 @default.
- W3141927404 hasConceptScore W3141927404C151730666 @default.
- W3141927404 hasConceptScore W3141927404C154945302 @default.
- W3141927404 hasConceptScore W3141927404C199360897 @default.
- W3141927404 hasConceptScore W3141927404C202444582 @default.
- W3141927404 hasConceptScore W3141927404C27438332 @default.
- W3141927404 hasConceptScore W3141927404C2778755073 @default.
- W3141927404 hasConceptScore W3141927404C2781039887 @default.
- W3141927404 hasConceptScore W3141927404C33676613 @default.
- W3141927404 hasConceptScore W3141927404C33923547 @default.
- W3141927404 hasConceptScore W3141927404C41008148 @default.
- W3141927404 hasConceptScore W3141927404C62520636 @default.
- W3141927404 hasConceptScore W3141927404C70518039 @default.
- W3141927404 hasConceptScore W3141927404C71559656 @default.