Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142002010> ?p ?o ?g. }
- W3142002010 endingPage "3248" @default.
- W3142002010 startingPage "3248" @default.
- W3142002010 abstract "Early diagnosis of breast cancer unequivocally improves the survival rate of patients and is crucial for disease treatment. With the current developments in infrared imaging, breast screening using dynamic thermography seems to be a great complementary method for clinical breast examination (CBE) prior to mammography. In this study, we propose a sparse deep convolutional autoencoder model named SPAER to extract low-dimensional deep thermomics to aid breast cancer diagnosis. The model receives multichannel, low-rank, approximated thermal bases as input images. SPAER provides a solution for high-dimensional deep learning features and selects the predominant basis matrix using matrix factorization techniques. The model has been evaluated using five state-of-the-art matrix factorization methods and 208 thermal breast cancer screening cases. The best accuracy was for non-negative matrix factorization (NMF)-SPAER + Clinical and NMF-SPAER for maintaining thermal heterogeneity, leading to finding symptomatic cases with accuracies of 78.2% (74.3–82.5%) and 77.7% (70.9–82.1%), respectively. SPAER showed significant robustness when tested for additive Gaussian noise cases (3–20% noise), evaluated by the signal-to-noise ratio (SNR). The results suggest high performance of SPAER for preserveing thermal heterogeneity, and it can be used as a noninvasive in vivo tool aiding CBE in the early detection of breast cancer." @default.
- W3142002010 created "2021-04-13" @default.
- W3142002010 creator A5027017464 @default.
- W3142002010 creator A5038158388 @default.
- W3142002010 creator A5063419413 @default.
- W3142002010 creator A5065379521 @default.
- W3142002010 creator A5077566748 @default.
- W3142002010 creator A5078508101 @default.
- W3142002010 creator A5083616879 @default.
- W3142002010 creator A5085580768 @default.
- W3142002010 date "2021-04-05" @default.
- W3142002010 modified "2023-09-25" @default.
- W3142002010 title "SPAER: Sparse Deep Convolutional Autoencoder Model to Extract Low Dimensional Imaging Biomarkers for Early Detection of Breast Cancer Using Dynamic Thermography" @default.
- W3142002010 cites W1862432136 @default.
- W3142002010 cites W1902027874 @default.
- W3142002010 cites W1967441007 @default.
- W3142002010 cites W1975519085 @default.
- W3142002010 cites W1983190542 @default.
- W3142002010 cites W1991634461 @default.
- W3142002010 cites W1993999961 @default.
- W3142002010 cites W2002173661 @default.
- W3142002010 cites W2017056838 @default.
- W3142002010 cites W2023718290 @default.
- W3142002010 cites W2038048029 @default.
- W3142002010 cites W2058340905 @default.
- W3142002010 cites W2062809449 @default.
- W3142002010 cites W2065995328 @default.
- W3142002010 cites W2068075482 @default.
- W3142002010 cites W2081975977 @default.
- W3142002010 cites W2083613630 @default.
- W3142002010 cites W2089528765 @default.
- W3142002010 cites W2090531504 @default.
- W3142002010 cites W2097475056 @default.
- W3142002010 cites W2105464873 @default.
- W3142002010 cites W2145205109 @default.
- W3142002010 cites W2158646588 @default.
- W3142002010 cites W2168103112 @default.
- W3142002010 cites W2174661749 @default.
- W3142002010 cites W2325015832 @default.
- W3142002010 cites W2486251306 @default.
- W3142002010 cites W2588519295 @default.
- W3142002010 cites W2618530766 @default.
- W3142002010 cites W2666633136 @default.
- W3142002010 cites W2767128594 @default.
- W3142002010 cites W2790498798 @default.
- W3142002010 cites W2792451631 @default.
- W3142002010 cites W2793955358 @default.
- W3142002010 cites W2804806906 @default.
- W3142002010 cites W2888045512 @default.
- W3142002010 cites W2898102618 @default.
- W3142002010 cites W2900822495 @default.
- W3142002010 cites W2922179111 @default.
- W3142002010 cites W2945801048 @default.
- W3142002010 cites W2982275336 @default.
- W3142002010 cites W2986600770 @default.
- W3142002010 cites W2994487087 @default.
- W3142002010 cites W3007341008 @default.
- W3142002010 cites W3036873622 @default.
- W3142002010 cites W3048659619 @default.
- W3142002010 cites W3091224149 @default.
- W3142002010 cites W3094845310 @default.
- W3142002010 cites W3116109778 @default.
- W3142002010 cites W3119005666 @default.
- W3142002010 cites W4240563447 @default.
- W3142002010 cites W4252851641 @default.
- W3142002010 doi "https://doi.org/10.3390/app11073248" @default.
- W3142002010 hasPublicationYear "2021" @default.
- W3142002010 type Work @default.
- W3142002010 sameAs 3142002010 @default.
- W3142002010 citedByCount "5" @default.
- W3142002010 countsByYear W31420020102021 @default.
- W3142002010 countsByYear W31420020102022 @default.
- W3142002010 countsByYear W31420020102023 @default.
- W3142002010 crossrefType "journal-article" @default.
- W3142002010 hasAuthorship W3142002010A5027017464 @default.
- W3142002010 hasAuthorship W3142002010A5038158388 @default.
- W3142002010 hasAuthorship W3142002010A5063419413 @default.
- W3142002010 hasAuthorship W3142002010A5065379521 @default.
- W3142002010 hasAuthorship W3142002010A5077566748 @default.
- W3142002010 hasAuthorship W3142002010A5078508101 @default.
- W3142002010 hasAuthorship W3142002010A5083616879 @default.
- W3142002010 hasAuthorship W3142002010A5085580768 @default.
- W3142002010 hasBestOaLocation W31420020101 @default.
- W3142002010 hasConcept C101738243 @default.
- W3142002010 hasConcept C108583219 @default.
- W3142002010 hasConcept C121332964 @default.
- W3142002010 hasConcept C121608353 @default.
- W3142002010 hasConcept C126322002 @default.
- W3142002010 hasConcept C152671427 @default.
- W3142002010 hasConcept C153180895 @default.
- W3142002010 hasConcept C154945302 @default.
- W3142002010 hasConcept C158693339 @default.
- W3142002010 hasConcept C2778491387 @default.
- W3142002010 hasConcept C2780472235 @default.
- W3142002010 hasConcept C41008148 @default.
- W3142002010 hasConcept C42355184 @default.
- W3142002010 hasConcept C530470458 @default.
- W3142002010 hasConcept C62520636 @default.