Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142073670> ?p ?o ?g. }
- W3142073670 endingPage "1019" @default.
- W3142073670 startingPage "1003" @default.
- W3142073670 abstract "Here, we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography (CT) scans. The scheme operates in four steps. Initially, we prepared a database containing COVID-19 pneumonia and normal CT scans. These images were retrieved from the Radiopaedia COVID-19 website. The images were divided into training and test sets in a ratio of 70:30. Then, multiple features were extracted from the training data. We used canonical correlation analysis to fuse the features into single vectors; this enhanced the predictive capacity. We next implemented a genetic algorithm (GA) in which an Extreme Learning Machine (ELM) served to assess GA fitness. Based on the ELM losses, the most discriminatory features were selected and saved as an ELM Model. Test images were sent to the model, and the best-selected features compared to those of the trained model to allow final predictions. Validation employed the collected chest CT scans. The best predictive accuracy of the ELM classifier was 93.9%; the scheme was effective." @default.
- W3142073670 created "2021-04-13" @default.
- W3142073670 creator A5002855381 @default.
- W3142073670 creator A5004775175 @default.
- W3142073670 creator A5007987858 @default.
- W3142073670 creator A5043736464 @default.
- W3142073670 creator A5054581568 @default.
- W3142073670 creator A5056024500 @default.
- W3142073670 creator A5067940140 @default.
- W3142073670 creator A5084968897 @default.
- W3142073670 date "2021-01-01" @default.
- W3142073670 modified "2023-10-16" @default.
- W3142073670 title "Classification of COVID-19 CT Scans via Extreme Learning Machine" @default.
- W3142073670 cites W2081863860 @default.
- W3142073670 cites W2163352848 @default.
- W3142073670 cites W2185967267 @default.
- W3142073670 cites W2767923674 @default.
- W3142073670 cites W2807079708 @default.
- W3142073670 cites W2899425762 @default.
- W3142073670 cites W2916740872 @default.
- W3142073670 cites W2925178532 @default.
- W3142073670 cites W2983509244 @default.
- W3142073670 cites W2988970523 @default.
- W3142073670 cites W2992171465 @default.
- W3142073670 cites W2997781171 @default.
- W3142073670 cites W2998249562 @default.
- W3142073670 cites W3001897055 @default.
- W3142073670 cites W3003457589 @default.
- W3142073670 cites W3003790823 @default.
- W3142073670 cites W3005111420 @default.
- W3142073670 cites W3006028741 @default.
- W3142073670 cites W3010223921 @default.
- W3142073670 cites W3011149445 @default.
- W3142073670 cites W3013601031 @default.
- W3142073670 cites W3032155710 @default.
- W3142073670 cites W3036552116 @default.
- W3142073670 cites W3042239862 @default.
- W3142073670 cites W3047434002 @default.
- W3142073670 cites W3049131298 @default.
- W3142073670 cites W3095142972 @default.
- W3142073670 cites W3099905444 @default.
- W3142073670 cites W3101978680 @default.
- W3142073670 cites W3162351260 @default.
- W3142073670 cites W4206205659 @default.
- W3142073670 doi "https://doi.org/10.32604/cmc.2021.015541" @default.
- W3142073670 hasPublicationYear "2021" @default.
- W3142073670 type Work @default.
- W3142073670 sameAs 3142073670 @default.
- W3142073670 citedByCount "6" @default.
- W3142073670 countsByYear W31420736702021 @default.
- W3142073670 countsByYear W31420736702022 @default.
- W3142073670 crossrefType "journal-article" @default.
- W3142073670 hasAuthorship W3142073670A5002855381 @default.
- W3142073670 hasAuthorship W3142073670A5004775175 @default.
- W3142073670 hasAuthorship W3142073670A5007987858 @default.
- W3142073670 hasAuthorship W3142073670A5043736464 @default.
- W3142073670 hasAuthorship W3142073670A5054581568 @default.
- W3142073670 hasAuthorship W3142073670A5056024500 @default.
- W3142073670 hasAuthorship W3142073670A5067940140 @default.
- W3142073670 hasAuthorship W3142073670A5084968897 @default.
- W3142073670 hasBestOaLocation W31420736701 @default.
- W3142073670 hasConcept C119599485 @default.
- W3142073670 hasConcept C119857082 @default.
- W3142073670 hasConcept C12267149 @default.
- W3142073670 hasConcept C126838900 @default.
- W3142073670 hasConcept C127413603 @default.
- W3142073670 hasConcept C141353440 @default.
- W3142073670 hasConcept C142724271 @default.
- W3142073670 hasConcept C148483581 @default.
- W3142073670 hasConcept C153180895 @default.
- W3142073670 hasConcept C154945302 @default.
- W3142073670 hasConcept C2779134260 @default.
- W3142073670 hasConcept C2780150128 @default.
- W3142073670 hasConcept C3008058167 @default.
- W3142073670 hasConcept C41008148 @default.
- W3142073670 hasConcept C50644808 @default.
- W3142073670 hasConcept C524204448 @default.
- W3142073670 hasConcept C544519230 @default.
- W3142073670 hasConcept C71924100 @default.
- W3142073670 hasConcept C95623464 @default.
- W3142073670 hasConceptScore W3142073670C119599485 @default.
- W3142073670 hasConceptScore W3142073670C119857082 @default.
- W3142073670 hasConceptScore W3142073670C12267149 @default.
- W3142073670 hasConceptScore W3142073670C126838900 @default.
- W3142073670 hasConceptScore W3142073670C127413603 @default.
- W3142073670 hasConceptScore W3142073670C141353440 @default.
- W3142073670 hasConceptScore W3142073670C142724271 @default.
- W3142073670 hasConceptScore W3142073670C148483581 @default.
- W3142073670 hasConceptScore W3142073670C153180895 @default.
- W3142073670 hasConceptScore W3142073670C154945302 @default.
- W3142073670 hasConceptScore W3142073670C2779134260 @default.
- W3142073670 hasConceptScore W3142073670C2780150128 @default.
- W3142073670 hasConceptScore W3142073670C3008058167 @default.
- W3142073670 hasConceptScore W3142073670C41008148 @default.
- W3142073670 hasConceptScore W3142073670C50644808 @default.
- W3142073670 hasConceptScore W3142073670C524204448 @default.
- W3142073670 hasConceptScore W3142073670C544519230 @default.
- W3142073670 hasConceptScore W3142073670C71924100 @default.