Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142215719> ?p ?o ?g. }
- W3142215719 endingPage "281" @default.
- W3142215719 startingPage "266" @default.
- W3142215719 abstract "ConspectusElectronic devices whose structural and functional features are inspired by living creatures have unique performance and unconventional features that are not found in conventional electronic devices. In addition to such bioinspired electronics, with the rise of new fields such as personalized healthcare, mobile electronics, and big-data analysis, biointegrated electronic devices that can collect biomedical information from the human body through various biosensors and deliver appropriate therapeutic feedback stimulations in real time on the spot where immediate treatment is needed have become important. Because body parts and internal organs of living creatures, including humans, have curvilinear shapes and comprise mechanically soft tissues, such bioinspired and biointegrated electronic devices are required to match the soft and deformable features of biological tissues. Such soft and deformable features of electronic devices can be achieved by employing flexible and stretchable materials and unconventional device design techniques.These soft materials and deformable device designs dissipate stress originating from mechanical deformation of the device and thus retard crack generation and/or propagation in the device. Recently, technologies for nanoscale materials have shown a significant level of progress on their material performance and processing technologies. The nanoscale dimension of the electronic materials could achieve extremely small flexural rigidity in comparison to the bulk state of the same materials. Furthermore, techniques to form a well-percolated network of nanomaterials in the elastomeric matrix and to build a pathway for the facile electron and hole transport inside the polymer have induced dramatic performance advances of soft electronic materials, which led to nanocomposites that can accomplish both high mechanical deformability and high electrical performance at the same time. In addition, deformable device designs such as buckled structures and serpentine designs enhance the flexibility and stretchability of the device further. Because of their soft and deformable nature, bioinspired and biointegrated electronic devices could achieve device structures inspired by living creatures and make conformal contact to the target tissue for high-quality measurement of biological signals and real-time feedback treatments.Herein, we introduce recent advances in nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. First, materials with various geometries (e.g., one-dimensional (1D) nanowires and nanotubes, two-dimensional (2D) nanomembranes and nanoflakes, and three-dimensional (3D) networks of nanomaterials in polymers) are reviewed in terms of their deformable nature. Then, the representative device design strategies required for achieving a soft and deformable form factor (e.g., buckling method, serpentine design, and kirigami technique) are reviewed. Examples of such state-of-the-art electronic devices are then presented, after which representative system-level applications, including electronic eyes, electronic skin, an electronic ear, wearable electronics, and implantable electronics, are described. Finally, we present a brief future outlook for the field of bioinspired and biointegrated electronics." @default.
- W3142215719 created "2021-04-13" @default.
- W3142215719 creator A5044370439 @default.
- W3142215719 creator A5045636184 @default.
- W3142215719 creator A5070309111 @default.
- W3142215719 creator A5079017148 @default.
- W3142215719 creator A5086835171 @default.
- W3142215719 date "2021-03-30" @default.
- W3142215719 modified "2023-09-29" @default.
- W3142215719 title "Nanoscale Materials and Deformable Device Designs for Bioinspired and Biointegrated Electronics" @default.
- W3142215719 cites W1609920162 @default.
- W3142215719 cites W1806740860 @default.
- W3142215719 cites W1949199799 @default.
- W3142215719 cites W1972615076 @default.
- W3142215719 cites W1977497618 @default.
- W3142215719 cites W1979369614 @default.
- W3142215719 cites W1983133004 @default.
- W3142215719 cites W2011584709 @default.
- W3142215719 cites W2015206113 @default.
- W3142215719 cites W2030213463 @default.
- W3142215719 cites W2032423464 @default.
- W3142215719 cites W2035559809 @default.
- W3142215719 cites W2084190861 @default.
- W3142215719 cites W2088750456 @default.
- W3142215719 cites W2099779584 @default.
- W3142215719 cites W2101124690 @default.
- W3142215719 cites W2105425384 @default.
- W3142215719 cites W2105993389 @default.
- W3142215719 cites W2114445636 @default.
- W3142215719 cites W2114721754 @default.
- W3142215719 cites W2129547735 @default.
- W3142215719 cites W2163166270 @default.
- W3142215719 cites W2167053601 @default.
- W3142215719 cites W2221665002 @default.
- W3142215719 cites W2232588983 @default.
- W3142215719 cites W2273001832 @default.
- W3142215719 cites W2290066381 @default.
- W3142215719 cites W2294620227 @default.
- W3142215719 cites W2300274263 @default.
- W3142215719 cites W2305946569 @default.
- W3142215719 cites W2332389502 @default.
- W3142215719 cites W2401852898 @default.
- W3142215719 cites W2417415344 @default.
- W3142215719 cites W2464927818 @default.
- W3142215719 cites W2470086190 @default.
- W3142215719 cites W2536138216 @default.
- W3142215719 cites W2560026817 @default.
- W3142215719 cites W2567654625 @default.
- W3142215719 cites W2606966042 @default.
- W3142215719 cites W2641153533 @default.
- W3142215719 cites W2745698473 @default.
- W3142215719 cites W2747038312 @default.
- W3142215719 cites W2753933330 @default.
- W3142215719 cites W2765936718 @default.
- W3142215719 cites W2768693422 @default.
- W3142215719 cites W2769688117 @default.
- W3142215719 cites W2770520638 @default.
- W3142215719 cites W2784309230 @default.
- W3142215719 cites W2807138734 @default.
- W3142215719 cites W2864966937 @default.
- W3142215719 cites W2886878416 @default.
- W3142215719 cites W2887185274 @default.
- W3142215719 cites W2896332982 @default.
- W3142215719 cites W2896735800 @default.
- W3142215719 cites W2905181497 @default.
- W3142215719 cites W2913795410 @default.
- W3142215719 cites W2945304860 @default.
- W3142215719 cites W2965133249 @default.
- W3142215719 cites W2967307231 @default.
- W3142215719 cites W2970386181 @default.
- W3142215719 cites W2978055385 @default.
- W3142215719 cites W2986437218 @default.
- W3142215719 cites W3012426727 @default.
- W3142215719 cites W3021326029 @default.
- W3142215719 cites W3036885590 @default.
- W3142215719 cites W3080891263 @default.
- W3142215719 cites W3093831449 @default.
- W3142215719 cites W3110294643 @default.
- W3142215719 cites W3118553428 @default.
- W3142215719 cites W4213360791 @default.
- W3142215719 doi "https://doi.org/10.1021/accountsmr.1c00020" @default.
- W3142215719 hasPublicationYear "2021" @default.
- W3142215719 type Work @default.
- W3142215719 sameAs 3142215719 @default.
- W3142215719 citedByCount "18" @default.
- W3142215719 countsByYear W31422157192021 @default.
- W3142215719 countsByYear W31422157192022 @default.
- W3142215719 countsByYear W31422157192023 @default.
- W3142215719 crossrefType "journal-article" @default.
- W3142215719 hasAuthorship W3142215719A5044370439 @default.
- W3142215719 hasAuthorship W3142215719A5045636184 @default.
- W3142215719 hasAuthorship W3142215719A5070309111 @default.
- W3142215719 hasAuthorship W3142215719A5079017148 @default.
- W3142215719 hasAuthorship W3142215719A5086835171 @default.
- W3142215719 hasConcept C119599485 @default.
- W3142215719 hasConcept C127413603 @default.
- W3142215719 hasConcept C138331895 @default.
- W3142215719 hasConcept C171250308 @default.