Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142230326> ?p ?o ?g. }
- W3142230326 endingPage "363" @default.
- W3142230326 startingPage "349" @default.
- W3142230326 abstract "Introduction Today, with advances in all sciences, we must always look for a way to make the best use of plant residues and turn them into valuable products. A consequence of improving family life standards and consistent industrial development is a higher demand for energy usage. Nowadays, agricultural residues are produced in huge quantities and could be considered as a promising source for renewable energy generation. Bagasse is one of the major sources of sugarcane production. The production of valuable products from Bagas, in addition to having economic benefits, can reduce the environmental damage caused by burning them. In recent years, there has been an increasing trend in the utilization of sugarcane bagasse as a major by-product of the sugarcane industry. Another very valuable substance produced from sugarcane bagasse, which we will discuss in this study, is bio compressed coal. Valorization of sugarcane bagasse to engineered biochar using hydrothermal carbonization (HTC) presents a perspective source to substitute conventional fossil fuels. HTC process offers the benefits of converting the sugarcane bagasse into biochar and bio-oil. In this process, biomass is usually conducted in the temperature range of 180–250 ◦C. HTC technique is promoted as one way of reducing carbon dioxide (CO) emissions, which mostly generated through open burning of crop residues. Besides the utilization for power/heat generation for sugarcane industries, Bagasse may find other potential applications, for instance: electricity generation, biogas production, livestock feed/compost production, and also bioethanol production. The unique features of biochar generated through HTC process are its portability, high volumetric energy density, hydrophobicity, and wear ability. Materials and Methods In this research, sugarcane waste was obtained from Hakim Farabi Sugarcane Cultivation and Industry Company in Ahvaz. The hydrothermal carbonization process was performed in a batch reactor at Shahid Chamran University of Ahvaz. The parameters studied in this study include the retention time of the material inside the reactor (30, 75, and 120 minutes), bagasse mass to water ratio (0.15, 0.20, and 0.30) and the pressure inside the reactor (10, 12.5 And 15 bar). In order to measure the pressure, a Nuova FiMa barometer was used, which was able to measure the pressure values up to 25 bar. A temperature control system model HANYoung ED6 was used, which was equipped with a ceramic heater with a diameter of 230 mm and a height of 230 mm to provide heat for the process. The PARR1266 calorie bomb device was employed to measure the calorific value of the samples. The moisture content of the samples was also measured using ASTM-2010a standard. In this experimental work, the response surface method was employed to investigate the effect of input parameters (i.e., pressure, residence time, and water-to-biomass) on the response parameter (i.e., HHV and energy consumption). Design Expert ver.10 software was used to predict the corresponding models. The obtained models provided a good relationship between the independent/dependent parameters. Results and Discussion The HTC process has been analyzed using a Response Surface Method to derive predicted models for the HHV and energy parameters. The results obtained showed that all models provided could successfully predict the HTC process. According to the results, the models developed were statistically significant at the level of 1%. The multi-regression models between the input/response variables were obtained as second-order quadratic equations. The F-value for the residence time, and water-to- bagasse, and pressure were 2417, 286, and 1185, respectively. The value of F-value of each derived model indicates the significance of the studied parameters. The parameters of water-to-bagasse and pressure had a more significant effect compared to the residence time factor. The R-square value for this study was achieved as 0.0996, indicating that the proposed model was able to evaluate the experimental data thoroughly. A multi-objective optimization technique was used to achieve an optimal HTC process condition with the maximum possible amount of desirability value. Conclusion The optimum amount of water-to-bagasse, pressure, and residence time was calculated using the response surface techniques. A pressure of 11 bar, the residence time of 38 min, and water-to-bagasse of 0.15 were found to be optimal values. The findings of this study indicate that at optimal input variables, the value of calorific value and used energy was 21 Mj/kg and 0.09 kWh, respectively. Keywords: Hydrothermal carbonization, Sugarcane bagasse, Response surface method, Optimization" @default.
- W3142230326 created "2021-04-13" @default.
- W3142230326 creator A5016740439 @default.
- W3142230326 creator A5028208206 @default.
- W3142230326 creator A5044475944 @default.
- W3142230326 creator A5090073991 @default.
- W3142230326 date "2020-11-21" @default.
- W3142230326 modified "2023-09-23" @default.
- W3142230326 title "Optimization of sugarcane bagasse fast pyrolysis conditions using response surface method" @default.
- W3142230326 cites W1122866445 @default.
- W3142230326 cites W1993111783 @default.
- W3142230326 cites W2022608875 @default.
- W3142230326 cites W2022633786 @default.
- W3142230326 cites W2029942596 @default.
- W3142230326 cites W2034704870 @default.
- W3142230326 cites W2048651481 @default.
- W3142230326 cites W2052749943 @default.
- W3142230326 cites W2054618742 @default.
- W3142230326 cites W2075466060 @default.
- W3142230326 cites W2081793279 @default.
- W3142230326 cites W2084037998 @default.
- W3142230326 cites W2086910055 @default.
- W3142230326 cites W2094468988 @default.
- W3142230326 cites W2142069711 @default.
- W3142230326 cites W2160841748 @default.
- W3142230326 cites W2219864215 @default.
- W3142230326 cites W2587999252 @default.
- W3142230326 cites W2590227807 @default.
- W3142230326 cites W2779394312 @default.
- W3142230326 cites W2795456232 @default.
- W3142230326 cites W2809064456 @default.
- W3142230326 cites W2887377068 @default.
- W3142230326 cites W2897192266 @default.
- W3142230326 cites W2900546531 @default.
- W3142230326 cites W2903238756 @default.
- W3142230326 cites W2906908494 @default.
- W3142230326 cites W2924831907 @default.
- W3142230326 cites W2974090886 @default.
- W3142230326 doi "https://doi.org/10.22055/agen.2020.33697.1568" @default.
- W3142230326 hasPublicationYear "2020" @default.
- W3142230326 type Work @default.
- W3142230326 sameAs 3142230326 @default.
- W3142230326 citedByCount "0" @default.
- W3142230326 crossrefType "journal-article" @default.
- W3142230326 hasAuthorship W3142230326A5016740439 @default.
- W3142230326 hasAuthorship W3142230326A5028208206 @default.
- W3142230326 hasAuthorship W3142230326A5044475944 @default.
- W3142230326 hasAuthorship W3142230326A5090073991 @default.
- W3142230326 hasConcept C115540264 @default.
- W3142230326 hasConcept C119599485 @default.
- W3142230326 hasConcept C121332964 @default.
- W3142230326 hasConcept C127413603 @default.
- W3142230326 hasConcept C134643618 @default.
- W3142230326 hasConcept C156380964 @default.
- W3142230326 hasConcept C163258240 @default.
- W3142230326 hasConcept C188573790 @default.
- W3142230326 hasConcept C2776756539 @default.
- W3142230326 hasConcept C36759035 @default.
- W3142230326 hasConcept C39432304 @default.
- W3142230326 hasConcept C423512 @default.
- W3142230326 hasConcept C528095902 @default.
- W3142230326 hasConcept C53991642 @default.
- W3142230326 hasConcept C548081761 @default.
- W3142230326 hasConcept C56085101 @default.
- W3142230326 hasConcept C62520636 @default.
- W3142230326 hasConcept C6557445 @default.
- W3142230326 hasConcept C68189081 @default.
- W3142230326 hasConcept C86803240 @default.
- W3142230326 hasConceptScore W3142230326C115540264 @default.
- W3142230326 hasConceptScore W3142230326C119599485 @default.
- W3142230326 hasConceptScore W3142230326C121332964 @default.
- W3142230326 hasConceptScore W3142230326C127413603 @default.
- W3142230326 hasConceptScore W3142230326C134643618 @default.
- W3142230326 hasConceptScore W3142230326C156380964 @default.
- W3142230326 hasConceptScore W3142230326C163258240 @default.
- W3142230326 hasConceptScore W3142230326C188573790 @default.
- W3142230326 hasConceptScore W3142230326C2776756539 @default.
- W3142230326 hasConceptScore W3142230326C36759035 @default.
- W3142230326 hasConceptScore W3142230326C39432304 @default.
- W3142230326 hasConceptScore W3142230326C423512 @default.
- W3142230326 hasConceptScore W3142230326C528095902 @default.
- W3142230326 hasConceptScore W3142230326C53991642 @default.
- W3142230326 hasConceptScore W3142230326C548081761 @default.
- W3142230326 hasConceptScore W3142230326C56085101 @default.
- W3142230326 hasConceptScore W3142230326C62520636 @default.
- W3142230326 hasConceptScore W3142230326C6557445 @default.
- W3142230326 hasConceptScore W3142230326C68189081 @default.
- W3142230326 hasConceptScore W3142230326C86803240 @default.
- W3142230326 hasIssue "3" @default.
- W3142230326 hasLocation W31422303261 @default.
- W3142230326 hasOpenAccess W3142230326 @default.
- W3142230326 hasPrimaryLocation W31422303261 @default.
- W3142230326 hasRelatedWork W2008801347 @default.
- W3142230326 hasRelatedWork W2014680645 @default.
- W3142230326 hasRelatedWork W2032662444 @default.
- W3142230326 hasRelatedWork W2046410463 @default.
- W3142230326 hasRelatedWork W2069021189 @default.
- W3142230326 hasRelatedWork W2149439223 @default.