Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142457648> ?p ?o ?g. }
- W3142457648 endingPage "55131" @default.
- W3142457648 startingPage "55098" @default.
- W3142457648 abstract "The sixth generation (6G) wireless communication network presents itself as a promising technique that can be utilized to provide a fully data-driven network evaluating and optimizing the end-to-end behavior and big volumes of a real-time network within a data rate of Tb/s. In addition, 6G adopts an average of 1000+ massive number of connections per person in one decade (2030 virtually instantaneously). The data-driven network is a novel service paradigm that offers a new application for the future of 6G wireless communication and network architecture. It enables ultra-reliable and low latency communication (URLLC) enhancing information transmission up to around 1 Tb/s data rate while achieving a 0.1 millisecond transmission latency. The main limitation of this technique is the computational power available for distributing with big data and greatly designed artificial neural networks. The work carried out in this paper aims to highlight improvements to the multi-level architecture by enabling artificial intelligence (AI) in URLLC providing a new technique in designing wireless networks. This is done through the application of learning, predicting, and decision-making to manage the stream of individuals trained by big data. The secondary aim of this research paper is to improve a multi-level architecture. This enables user level for device intelligence, cell level for edge intelligence, and cloud intelligence for URLLC. The improvement mainly depends on using the training process in unsupervised learning by developing data-driven resource management. In addition, improving a multi-level architecture for URLLC through deep learning (DL) would facilitate the creation of a data-driven AI system, 6G networks for intelligent devices, and technologies based on an effective learning capability. These investigational problems are essential in addressing the requirements in the creation of future smart networks. Moreover, this work provides further ideas on several research gaps between DL and 6G that are up-to-date unknown." @default.
- W3142457648 created "2021-04-13" @default.
- W3142457648 creator A5007255773 @default.
- W3142457648 creator A5014834110 @default.
- W3142457648 creator A5022495438 @default.
- W3142457648 creator A5042702804 @default.
- W3142457648 creator A5052838486 @default.
- W3142457648 creator A5057116446 @default.
- W3142457648 creator A5064472286 @default.
- W3142457648 creator A5066783464 @default.
- W3142457648 creator A5081106971 @default.
- W3142457648 creator A5083891484 @default.
- W3142457648 date "2021-01-01" @default.
- W3142457648 modified "2023-10-06" @default.
- W3142457648 title "A Survey on Deep Learning for Ultra-Reliable and Low-Latency Communications Challenges on 6G Wireless Systems" @default.
- W3142457648 cites W139596442 @default.
- W3142457648 cites W1662878913 @default.
- W3142457648 cites W1894905291 @default.
- W3142457648 cites W1901393815 @default.
- W3142457648 cites W1906224694 @default.
- W3142457648 cites W1996670292 @default.
- W3142457648 cites W1997858594 @default.
- W3142457648 cites W2010141274 @default.
- W3142457648 cites W2013901727 @default.
- W3142457648 cites W2020081405 @default.
- W3142457648 cites W2023901557 @default.
- W3142457648 cites W2024375088 @default.
- W3142457648 cites W2061174739 @default.
- W3142457648 cites W2065724304 @default.
- W3142457648 cites W2066070009 @default.
- W3142457648 cites W2082380489 @default.
- W3142457648 cites W2084576311 @default.
- W3142457648 cites W2091005538 @default.
- W3142457648 cites W2091159181 @default.
- W3142457648 cites W2106864314 @default.
- W3142457648 cites W2118615835 @default.
- W3142457648 cites W2119942913 @default.
- W3142457648 cites W2137476548 @default.
- W3142457648 cites W2137983211 @default.
- W3142457648 cites W2141683024 @default.
- W3142457648 cites W2150080833 @default.
- W3142457648 cites W2171887893 @default.
- W3142457648 cites W2181788522 @default.
- W3142457648 cites W2209513825 @default.
- W3142457648 cites W2249041762 @default.
- W3142457648 cites W2262889796 @default.
- W3142457648 cites W2285613413 @default.
- W3142457648 cites W2285924575 @default.
- W3142457648 cites W2294511912 @default.
- W3142457648 cites W2301955098 @default.
- W3142457648 cites W2313875766 @default.
- W3142457648 cites W2319171983 @default.
- W3142457648 cites W2343448572 @default.
- W3142457648 cites W2386479820 @default.
- W3142457648 cites W2406784772 @default.
- W3142457648 cites W2433339266 @default.
- W3142457648 cites W2438491374 @default.
- W3142457648 cites W2473283431 @default.
- W3142457648 cites W2510086392 @default.
- W3142457648 cites W2514470533 @default.
- W3142457648 cites W2521707497 @default.
- W3142457648 cites W2529167286 @default.
- W3142457648 cites W2554215716 @default.
- W3142457648 cites W2560325424 @default.
- W3142457648 cites W2562947506 @default.
- W3142457648 cites W2571254578 @default.
- W3142457648 cites W2584943905 @default.
- W3142457648 cites W2586501264 @default.
- W3142457648 cites W2588811417 @default.
- W3142457648 cites W2592271129 @default.
- W3142457648 cites W2593182953 @default.
- W3142457648 cites W2595926085 @default.
- W3142457648 cites W2596760110 @default.
- W3142457648 cites W2602923095 @default.
- W3142457648 cites W2604382266 @default.
- W3142457648 cites W2604924587 @default.
- W3142457648 cites W2611484353 @default.
- W3142457648 cites W2612103911 @default.
- W3142457648 cites W2620362738 @default.
- W3142457648 cites W2623357190 @default.
- W3142457648 cites W2623718314 @default.
- W3142457648 cites W2624989916 @default.
- W3142457648 cites W2626444157 @default.
- W3142457648 cites W2626574340 @default.
- W3142457648 cites W2730819250 @default.
- W3142457648 cites W2733075960 @default.
- W3142457648 cites W2735793369 @default.
- W3142457648 cites W2736068844 @default.
- W3142457648 cites W2737355678 @default.
- W3142457648 cites W2738538347 @default.
- W3142457648 cites W2738902735 @default.
- W3142457648 cites W2741764191 @default.
- W3142457648 cites W2765542374 @default.
- W3142457648 cites W2766908075 @default.
- W3142457648 cites W2767359317 @default.
- W3142457648 cites W2770587725 @default.
- W3142457648 cites W2773810651 @default.
- W3142457648 cites W2774975003 @default.