Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142471904> ?p ?o ?g. }
- W3142471904 abstract "Abstract Background Ensuring data is of appropriate quality is essential for the secondary use of electronic health records (EHRs) in research and clinical decision support. An effective method of data quality assessment (DQA) is automating data quality rules (DQRs) to replace the time-consuming, labor-intensive manual process of creating DQRs, which is difficult to guarantee standard and comparable DQA results. This paper presents a case study of automatically creating DQRs based on openEHR archetypes in a Chinese hospital to investigate the feasibility and challenges of automating DQA for EHR data. Methods The clinical data repository (CDR) of the Shanxi Dayi Hospital is an archetype-based relational database. Four steps are undertaken to automatically create DQRs in this CDR database. First, the keywords and features relevant to DQA of archetypes were identified via mapping them to a well-established DQA framework, Kahn’s DQA framework. Second, the templates of DQRs in correspondence with these identified keywords and features were created in the structured query language (SQL). Third, the quality constraints were retrieved from archetypes. Fourth, these quality constraints were automatically converted to DQRs according to the pre-designed templates and mapping relationships of archetypes and data tables. We utilized the archetypes of the CDR to automatically create DQRs to meet quality requirements of the Chinese Application-Level Ranking Standard for EHR Systems (CARSES) and evaluated their coverage by comparing with expert-created DQRs. Results We used 27 archetypes to automatically create 359 DQRs. 319 of them are in agreement with the expert-created DQRs, covering 84.97% (311/366) requirements of the CARSES. The auto-created DQRs had varying levels of coverage of the four quality domains mandated by the CARSES: 100% (45/45) of consistency, 98.11% (208/212) of completeness, 54.02% (57/87) of conformity, and 50% (11/22) of timeliness. Conclusion It’s feasible to create DQRs automatically based on openEHR archetypes. This study evaluated the coverage of the auto-created DQRs to a typical DQA task of Chinese hospitals, the CARSES. The challenges of automating DQR creation were identified, such as quality requirements based on semantic, and complex constraints of multiple elements. This research can enlighten the exploration of DQR auto-creation and contribute to the automatic DQA." @default.
- W3142471904 created "2021-04-13" @default.
- W3142471904 creator A5016397393 @default.
- W3142471904 creator A5041421158 @default.
- W3142471904 creator A5050004899 @default.
- W3142471904 creator A5056801542 @default.
- W3142471904 creator A5064032702 @default.
- W3142471904 creator A5091670458 @default.
- W3142471904 date "2021-04-03" @default.
- W3142471904 modified "2023-09-24" @default.
- W3142471904 title "Application of openEHR archetypes to automate data quality rules for electronic health records: a case study" @default.
- W3142471904 cites W1994899565 @default.
- W3142471904 cites W1997927489 @default.
- W3142471904 cites W2005930169 @default.
- W3142471904 cites W2018025378 @default.
- W3142471904 cites W2047363478 @default.
- W3142471904 cites W2061702164 @default.
- W3142471904 cites W2080635269 @default.
- W3142471904 cites W2156823889 @default.
- W3142471904 cites W2158939484 @default.
- W3142471904 cites W2291655442 @default.
- W3142471904 cites W2305518331 @default.
- W3142471904 cites W2417746913 @default.
- W3142471904 cites W2466978013 @default.
- W3142471904 cites W2517388783 @default.
- W3142471904 cites W2518786827 @default.
- W3142471904 cites W2557559657 @default.
- W3142471904 cites W2604341722 @default.
- W3142471904 cites W2752570039 @default.
- W3142471904 cites W2793002478 @default.
- W3142471904 cites W2889464987 @default.
- W3142471904 cites W2949688312 @default.
- W3142471904 cites W2981613501 @default.
- W3142471904 doi "https://doi.org/10.1186/s12911-021-01481-2" @default.
- W3142471904 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8019503" @default.
- W3142471904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33812388" @default.
- W3142471904 hasPublicationYear "2021" @default.
- W3142471904 type Work @default.
- W3142471904 sameAs 3142471904 @default.
- W3142471904 citedByCount "2" @default.
- W3142471904 countsByYear W31424719042021 @default.
- W3142471904 countsByYear W31424719042022 @default.
- W3142471904 crossrefType "journal-article" @default.
- W3142471904 hasAuthorship W3142471904A5016397393 @default.
- W3142471904 hasAuthorship W3142471904A5041421158 @default.
- W3142471904 hasAuthorship W3142471904A5050004899 @default.
- W3142471904 hasAuthorship W3142471904A5056801542 @default.
- W3142471904 hasAuthorship W3142471904A5064032702 @default.
- W3142471904 hasAuthorship W3142471904A5091670458 @default.
- W3142471904 hasBestOaLocation W31424719041 @default.
- W3142471904 hasConcept C111472728 @default.
- W3142471904 hasConcept C124101348 @default.
- W3142471904 hasConcept C124952713 @default.
- W3142471904 hasConcept C138885662 @default.
- W3142471904 hasConcept C142362112 @default.
- W3142471904 hasConcept C145642194 @default.
- W3142471904 hasConcept C160735492 @default.
- W3142471904 hasConcept C162324750 @default.
- W3142471904 hasConcept C176217482 @default.
- W3142471904 hasConcept C189430467 @default.
- W3142471904 hasConcept C21547014 @default.
- W3142471904 hasConcept C23123220 @default.
- W3142471904 hasConcept C24756922 @default.
- W3142471904 hasConcept C2522767166 @default.
- W3142471904 hasConcept C2779530757 @default.
- W3142471904 hasConcept C41008148 @default.
- W3142471904 hasConcept C49848784 @default.
- W3142471904 hasConcept C50522688 @default.
- W3142471904 hasConcept C510870499 @default.
- W3142471904 hasConcept C5655090 @default.
- W3142471904 hasConcept C77088390 @default.
- W3142471904 hasConceptScore W3142471904C111472728 @default.
- W3142471904 hasConceptScore W3142471904C124101348 @default.
- W3142471904 hasConceptScore W3142471904C124952713 @default.
- W3142471904 hasConceptScore W3142471904C138885662 @default.
- W3142471904 hasConceptScore W3142471904C142362112 @default.
- W3142471904 hasConceptScore W3142471904C145642194 @default.
- W3142471904 hasConceptScore W3142471904C160735492 @default.
- W3142471904 hasConceptScore W3142471904C162324750 @default.
- W3142471904 hasConceptScore W3142471904C176217482 @default.
- W3142471904 hasConceptScore W3142471904C189430467 @default.
- W3142471904 hasConceptScore W3142471904C21547014 @default.
- W3142471904 hasConceptScore W3142471904C23123220 @default.
- W3142471904 hasConceptScore W3142471904C24756922 @default.
- W3142471904 hasConceptScore W3142471904C2522767166 @default.
- W3142471904 hasConceptScore W3142471904C2779530757 @default.
- W3142471904 hasConceptScore W3142471904C41008148 @default.
- W3142471904 hasConceptScore W3142471904C49848784 @default.
- W3142471904 hasConceptScore W3142471904C50522688 @default.
- W3142471904 hasConceptScore W3142471904C510870499 @default.
- W3142471904 hasConceptScore W3142471904C5655090 @default.
- W3142471904 hasConceptScore W3142471904C77088390 @default.
- W3142471904 hasLocation W31424719041 @default.
- W3142471904 hasLocation W31424719042 @default.
- W3142471904 hasOpenAccess W3142471904 @default.
- W3142471904 hasPrimaryLocation W31424719041 @default.
- W3142471904 hasRelatedWork W10027688 @default.
- W3142471904 hasRelatedWork W10784229 @default.
- W3142471904 hasRelatedWork W12142075 @default.
- W3142471904 hasRelatedWork W12422471 @default.