Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142476504> ?p ?o ?g. }
- W3142476504 abstract "As annotations of data can be scarce in large-scale practical problems, leveraging unlabelled examples is one of the most important aspects of machine learning. This is the aim of semi-supervised learning. To benefit from the access to unlabelled data, it is natural to diffuse smoothly knowledge of labelled data to unlabelled one. This induces to the use of Laplacian regularization. Yet, current implementations of Laplacian regularization suffer from several drawbacks, notably the well-known curse of dimensionality. In this paper, we provide a statistical analysis to overcome those issues, and unveil a large body of spectral filtering methods that exhibit desirable behaviors. They are implemented through (reproducing) kernel methods, for which we provide realistic computational guidelines in order to make our method usable with large amounts of data." @default.
- W3142476504 created "2021-04-13" @default.
- W3142476504 creator A5001483226 @default.
- W3142476504 creator A5015855062 @default.
- W3142476504 creator A5019263367 @default.
- W3142476504 creator A5059273291 @default.
- W3142476504 date "2021-12-06" @default.
- W3142476504 modified "2023-10-17" @default.
- W3142476504 title "Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning" @default.
- W3142476504 cites W1560724230 @default.
- W3142476504 cites W1774304772 @default.
- W3142476504 cites W1940008012 @default.
- W3142476504 cites W1967320885 @default.
- W3142476504 cites W1994655188 @default.
- W3142476504 cites W2012501405 @default.
- W3142476504 cites W2024328138 @default.
- W3142476504 cites W2056963858 @default.
- W3142476504 cites W2083515729 @default.
- W3142476504 cites W2097308346 @default.
- W3142476504 cites W2102236934 @default.
- W3142476504 cites W2102705755 @default.
- W3142476504 cites W2107108030 @default.
- W3142476504 cites W2107194942 @default.
- W3142476504 cites W2108598243 @default.
- W3142476504 cites W2111478152 @default.
- W3142476504 cites W2112545207 @default.
- W3142476504 cites W2114930007 @default.
- W3142476504 cites W2120409953 @default.
- W3142476504 cites W2143420533 @default.
- W3142476504 cites W2144372981 @default.
- W3142476504 cites W2144902422 @default.
- W3142476504 cites W2147874349 @default.
- W3142476504 cites W2154455818 @default.
- W3142476504 cites W2158681777 @default.
- W3142476504 cites W2184987264 @default.
- W3142476504 cites W2221898772 @default.
- W3142476504 cites W2895466035 @default.
- W3142476504 cites W2896457183 @default.
- W3142476504 cites W2913243980 @default.
- W3142476504 cites W2962720813 @default.
- W3142476504 cites W2962795934 @default.
- W3142476504 cites W2962828740 @default.
- W3142476504 cites W2962941098 @default.
- W3142476504 cites W2963674301 @default.
- W3142476504 cites W2976645955 @default.
- W3142476504 cites W2978426779 @default.
- W3142476504 cites W2984008963 @default.
- W3142476504 cites W2984353870 @default.
- W3142476504 cites W3011980396 @default.
- W3142476504 cites W3020919495 @default.
- W3142476504 cites W3035436849 @default.
- W3142476504 cites W3037113333 @default.
- W3142476504 cites W3040340324 @default.
- W3142476504 cites W3040536995 @default.
- W3142476504 cites W3099777040 @default.
- W3142476504 cites W3110628696 @default.
- W3142476504 cites W3126328176 @default.
- W3142476504 cites W3130725718 @default.
- W3142476504 cites W3132099426 @default.
- W3142476504 cites W3173602868 @default.
- W3142476504 cites W3209458476 @default.
- W3142476504 hasPublicationYear "2021" @default.
- W3142476504 type Work @default.
- W3142476504 sameAs 3142476504 @default.
- W3142476504 citedByCount "0" @default.
- W3142476504 crossrefType "proceedings-article" @default.
- W3142476504 hasAuthorship W3142476504A5001483226 @default.
- W3142476504 hasAuthorship W3142476504A5015855062 @default.
- W3142476504 hasAuthorship W3142476504A5019263367 @default.
- W3142476504 hasAuthorship W3142476504A5059273291 @default.
- W3142476504 hasBestOaLocation W31424765041 @default.
- W3142476504 hasConcept C111030470 @default.
- W3142476504 hasConcept C119857082 @default.
- W3142476504 hasConcept C134306372 @default.
- W3142476504 hasConcept C136389625 @default.
- W3142476504 hasConcept C144024400 @default.
- W3142476504 hasConcept C151876577 @default.
- W3142476504 hasConcept C153180895 @default.
- W3142476504 hasConcept C154945302 @default.
- W3142476504 hasConcept C165700671 @default.
- W3142476504 hasConcept C19165224 @default.
- W3142476504 hasConcept C2776135515 @default.
- W3142476504 hasConcept C2780273121 @default.
- W3142476504 hasConcept C33923547 @default.
- W3142476504 hasConcept C41008148 @default.
- W3142476504 hasConcept C50644808 @default.
- W3142476504 hasConcept C58973888 @default.
- W3142476504 hasConcept C70518039 @default.
- W3142476504 hasConceptScore W3142476504C111030470 @default.
- W3142476504 hasConceptScore W3142476504C119857082 @default.
- W3142476504 hasConceptScore W3142476504C134306372 @default.
- W3142476504 hasConceptScore W3142476504C136389625 @default.
- W3142476504 hasConceptScore W3142476504C144024400 @default.
- W3142476504 hasConceptScore W3142476504C151876577 @default.
- W3142476504 hasConceptScore W3142476504C153180895 @default.
- W3142476504 hasConceptScore W3142476504C154945302 @default.
- W3142476504 hasConceptScore W3142476504C165700671 @default.
- W3142476504 hasConceptScore W3142476504C19165224 @default.
- W3142476504 hasConceptScore W3142476504C2776135515 @default.
- W3142476504 hasConceptScore W3142476504C2780273121 @default.