Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142701555> ?p ?o ?g. }
- W3142701555 endingPage "046103" @default.
- W3142701555 startingPage "046103" @default.
- W3142701555 abstract "Quantitative phase imaging (QPI) has been widely applied in characterizing cells and tissues. Spatial light interference microscopy (SLIM) is a highly sensitive QPI method due to its partially coherent illumination and common path interferometry geometry. However, SLIM's acquisition rate is limited because of the four-frame phase-shifting scheme. On the other hand, off-axis methods such as diffraction phase microscopy (DPM) allow for single-shot QPI. However, the laser-based DPM system is plagued by spatial noise due to speckles and multiple reflections. In a parallel development, deep learning was proven valuable in the field of bioimaging, especially due to its ability to translate one form of contrast into another. Here, we propose using deep learning to produce synthetic, SLIM-quality, and high-sensitivity phase maps from DPM using single-shot images as the input. We used an inverted microscope with its two ports connected to the DPM and SLIM modules such that we have access to the two types of images on the same field of view. We constructed a deep learning model based on U-net and trained on over 1000 pairs of DPM and SLIM images. The model learned to remove the speckles in laser DPM and overcame the background phase noise in both the test set and new data. The average peak signal-to-noise ratio, Pearson correlation coefficient, and structural similarity index measure were 29.97, 0.79, and 0.82 for the test dataset. Furthermore, we implemented the neural network inference into the live acquisition software, which now allows a DPM user to observe in real-time an extremely low-noise phase image. We demonstrated this principle of computational interference microscopy imaging using blood smears, as they contain both erythrocytes and leukocytes, under static and dynamic conditions." @default.
- W3142701555 created "2021-04-13" @default.
- W3142701555 creator A5004021726 @default.
- W3142701555 creator A5014946139 @default.
- W3142701555 creator A5024577780 @default.
- W3142701555 creator A5056127619 @default.
- W3142701555 creator A5058913315 @default.
- W3142701555 creator A5064320560 @default.
- W3142701555 date "2021-04-01" @default.
- W3142701555 modified "2023-10-16" @default.
- W3142701555 title "Computational interference microscopy enabled by deep learning" @default.
- W3142701555 cites W1580389772 @default.
- W3142701555 cites W1901129140 @default.
- W3142701555 cites W1980948373 @default.
- W3142701555 cites W1989183603 @default.
- W3142701555 cites W1992896455 @default.
- W3142701555 cites W2002832520 @default.
- W3142701555 cites W2004908285 @default.
- W3142701555 cites W2010321717 @default.
- W3142701555 cites W2012355455 @default.
- W3142701555 cites W2021510179 @default.
- W3142701555 cites W2023569304 @default.
- W3142701555 cites W2037015513 @default.
- W3142701555 cites W2047416239 @default.
- W3142701555 cites W2060662116 @default.
- W3142701555 cites W2066423394 @default.
- W3142701555 cites W2072077521 @default.
- W3142701555 cites W2074282631 @default.
- W3142701555 cites W2085842887 @default.
- W3142701555 cites W2090908229 @default.
- W3142701555 cites W2117586943 @default.
- W3142701555 cites W2124677456 @default.
- W3142701555 cites W2131013707 @default.
- W3142701555 cites W2146519452 @default.
- W3142701555 cites W2565072241 @default.
- W3142701555 cites W2594893130 @default.
- W3142701555 cites W2605076099 @default.
- W3142701555 cites W2693998992 @default.
- W3142701555 cites W2791089379 @default.
- W3142701555 cites W2797749376 @default.
- W3142701555 cites W2810532618 @default.
- W3142701555 cites W2884160046 @default.
- W3142701555 cites W2892479404 @default.
- W3142701555 cites W2911741036 @default.
- W3142701555 cites W2953276466 @default.
- W3142701555 cites W2967028468 @default.
- W3142701555 cites W2979482445 @default.
- W3142701555 cites W2980978229 @default.
- W3142701555 cites W3004058879 @default.
- W3142701555 cites W3007823945 @default.
- W3142701555 cites W3029367866 @default.
- W3142701555 cites W3042534002 @default.
- W3142701555 cites W3069643220 @default.
- W3142701555 cites W3096448160 @default.
- W3142701555 cites W3098491829 @default.
- W3142701555 cites W3112158685 @default.
- W3142701555 cites W4230330572 @default.
- W3142701555 cites W4240691888 @default.
- W3142701555 cites W4241300192 @default.
- W3142701555 cites W4249023884 @default.
- W3142701555 doi "https://doi.org/10.1063/5.0041901" @default.
- W3142701555 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35308602" @default.
- W3142701555 hasPublicationYear "2021" @default.
- W3142701555 type Work @default.
- W3142701555 sameAs 3142701555 @default.
- W3142701555 citedByCount "7" @default.
- W3142701555 countsByYear W31427015552021 @default.
- W3142701555 countsByYear W31427015552022 @default.
- W3142701555 countsByYear W31427015552023 @default.
- W3142701555 crossrefType "journal-article" @default.
- W3142701555 hasAuthorship W3142701555A5004021726 @default.
- W3142701555 hasAuthorship W3142701555A5014946139 @default.
- W3142701555 hasAuthorship W3142701555A5024577780 @default.
- W3142701555 hasAuthorship W3142701555A5056127619 @default.
- W3142701555 hasAuthorship W3142701555A5058913315 @default.
- W3142701555 hasAuthorship W3142701555A5064320560 @default.
- W3142701555 hasBestOaLocation W31427015551 @default.
- W3142701555 hasConcept C100921725 @default.
- W3142701555 hasConcept C102290492 @default.
- W3142701555 hasConcept C108583219 @default.
- W3142701555 hasConcept C115961682 @default.
- W3142701555 hasConcept C120665830 @default.
- W3142701555 hasConcept C121332964 @default.
- W3142701555 hasConcept C127162648 @default.
- W3142701555 hasConcept C152194808 @default.
- W3142701555 hasConcept C154945302 @default.
- W3142701555 hasConcept C166689943 @default.
- W3142701555 hasConcept C180940675 @default.
- W3142701555 hasConcept C31972630 @default.
- W3142701555 hasConcept C32022120 @default.
- W3142701555 hasConcept C41008148 @default.
- W3142701555 hasConcept C44280652 @default.
- W3142701555 hasConcept C50644808 @default.
- W3142701555 hasConcept C62520636 @default.
- W3142701555 hasConcept C67649825 @default.
- W3142701555 hasConcept C76155785 @default.
- W3142701555 hasConcept C99498987 @default.
- W3142701555 hasConceptScore W3142701555C100921725 @default.