Matches in SemOpenAlex for { <https://semopenalex.org/work/W3142731643> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3142731643 endingPage "498" @default.
- W3142731643 startingPage "488" @default.
- W3142731643 abstract "Impulse components in vibration signals are important fault features of complex machines. Sparse coding(SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding(FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis." @default.
- W3142731643 created "2021-04-13" @default.
- W3142731643 creator A5002522499 @default.
- W3142731643 creator A5002591266 @default.
- W3142731643 creator A5015671162 @default.
- W3142731643 creator A5017114163 @default.
- W3142731643 creator A5023539921 @default.
- W3142731643 creator A5052153075 @default.
- W3142731643 creator A5071540194 @default.
- W3142731643 creator A5085858455 @default.
- W3142731643 creator A5056837272 @default.
- W3142731643 date "2015-01-01" @default.
- W3142731643 modified "2023-10-17" @default.
- W3142731643 title "Impulse feature extraction method for machinery fault detection using fusion sparse coding and online dictionary learning" @default.
- W3142731643 hasPublicationYear "2015" @default.
- W3142731643 type Work @default.
- W3142731643 sameAs 3142731643 @default.
- W3142731643 citedByCount "0" @default.
- W3142731643 crossrefType "journal-article" @default.
- W3142731643 hasAuthorship W3142731643A5002522499 @default.
- W3142731643 hasAuthorship W3142731643A5002591266 @default.
- W3142731643 hasAuthorship W3142731643A5015671162 @default.
- W3142731643 hasAuthorship W3142731643A5017114163 @default.
- W3142731643 hasAuthorship W3142731643A5023539921 @default.
- W3142731643 hasAuthorship W3142731643A5052153075 @default.
- W3142731643 hasAuthorship W3142731643A5056837272 @default.
- W3142731643 hasAuthorship W3142731643A5071540194 @default.
- W3142731643 hasAuthorship W3142731643A5085858455 @default.
- W3142731643 hasConcept C104267543 @default.
- W3142731643 hasConcept C105795698 @default.
- W3142731643 hasConcept C121332964 @default.
- W3142731643 hasConcept C124066611 @default.
- W3142731643 hasConcept C153180895 @default.
- W3142731643 hasConcept C154771677 @default.
- W3142731643 hasConcept C154945302 @default.
- W3142731643 hasConcept C179518139 @default.
- W3142731643 hasConcept C33923547 @default.
- W3142731643 hasConcept C41008148 @default.
- W3142731643 hasConcept C52622490 @default.
- W3142731643 hasConcept C62520636 @default.
- W3142731643 hasConcept C70836080 @default.
- W3142731643 hasConcept C77637269 @default.
- W3142731643 hasConcept C84462506 @default.
- W3142731643 hasConcept C9390403 @default.
- W3142731643 hasConceptScore W3142731643C104267543 @default.
- W3142731643 hasConceptScore W3142731643C105795698 @default.
- W3142731643 hasConceptScore W3142731643C121332964 @default.
- W3142731643 hasConceptScore W3142731643C124066611 @default.
- W3142731643 hasConceptScore W3142731643C153180895 @default.
- W3142731643 hasConceptScore W3142731643C154771677 @default.
- W3142731643 hasConceptScore W3142731643C154945302 @default.
- W3142731643 hasConceptScore W3142731643C179518139 @default.
- W3142731643 hasConceptScore W3142731643C33923547 @default.
- W3142731643 hasConceptScore W3142731643C41008148 @default.
- W3142731643 hasConceptScore W3142731643C52622490 @default.
- W3142731643 hasConceptScore W3142731643C62520636 @default.
- W3142731643 hasConceptScore W3142731643C70836080 @default.
- W3142731643 hasConceptScore W3142731643C77637269 @default.
- W3142731643 hasConceptScore W3142731643C84462506 @default.
- W3142731643 hasConceptScore W3142731643C9390403 @default.
- W3142731643 hasIssue "2" @default.
- W3142731643 hasLocation W31427316431 @default.
- W3142731643 hasOpenAccess W3142731643 @default.
- W3142731643 hasPrimaryLocation W31427316431 @default.
- W3142731643 hasRelatedWork W1531971198 @default.
- W3142731643 hasRelatedWork W1694307164 @default.
- W3142731643 hasRelatedWork W1975320187 @default.
- W3142731643 hasRelatedWork W2019058314 @default.
- W3142731643 hasRelatedWork W2053429611 @default.
- W3142731643 hasRelatedWork W2059905643 @default.
- W3142731643 hasRelatedWork W2066458068 @default.
- W3142731643 hasRelatedWork W2089109195 @default.
- W3142731643 hasRelatedWork W2150270527 @default.
- W3142731643 hasRelatedWork W2270508958 @default.
- W3142731643 hasRelatedWork W2315814222 @default.
- W3142731643 hasRelatedWork W2394950805 @default.
- W3142731643 hasRelatedWork W2467112534 @default.
- W3142731643 hasRelatedWork W2561160119 @default.
- W3142731643 hasRelatedWork W2738244484 @default.
- W3142731643 hasRelatedWork W2799253018 @default.
- W3142731643 hasRelatedWork W2911827809 @default.
- W3142731643 hasRelatedWork W3006445508 @default.
- W3142731643 hasRelatedWork W3036271182 @default.
- W3142731643 hasRelatedWork W2866063864 @default.
- W3142731643 isParatext "false" @default.
- W3142731643 isRetracted "false" @default.
- W3142731643 magId "3142731643" @default.
- W3142731643 workType "article" @default.