Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143148719> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3143148719 abstract "The diffusion of solar energy is increasing at the exponential rate at the utility scale. The stochastic nature and its behavior are difficult to predict, thus forcing researchers to use the approach of deep learning. As the world is consuming more electricity and wasting the most vital aspect of the energy, the generation of solar energy is crucial for the balancing of the power grid and its optimization. For efficient operation and stability, it is essential to forecast solar energy. To do so, physical laws are applied for computation of the direction of the sun’s rays as well as its accumulated energy. The computational evaluation for the production of solar energy is quite challenging in the field of AI. There is a need to take into consideration certain factors like the positioning of the sun, fluctuation of the weather condition, and many more. It becomes challenging in cloudy weather because the movement of the clouds is unpredictable. This sometimes introduces computational error in the result, which may be ignored. In this chapter, an attempt is made to use the deep learning networks and models to capture the movement of the cloud pattern and how its impact will be on the generation of solar energy. In the proposed model using a deep learning network, the error rate reduces to 11%. Previous studies have shown an error rate of 21%. The 10% improvement in error rate will have a positive effect on the development of the solar energy industry in a healthier manner and reduce the cost (in USD) along with the reduction in the dependency on the emission of carbon dioxide." @default.
- W3143148719 created "2021-04-13" @default.
- W3143148719 creator A5018075638 @default.
- W3143148719 creator A5042516627 @default.
- W3143148719 creator A5049012445 @default.
- W3143148719 creator A5087630623 @default.
- W3143148719 date "2021-04-12" @default.
- W3143148719 modified "2023-09-24" @default.
- W3143148719 title "Deep Learning Approach towards Solar Energy Forecast" @default.
- W3143148719 cites W3212438421 @default.
- W3143148719 doi "https://doi.org/10.1201/9781003121237-9" @default.
- W3143148719 hasPublicationYear "2021" @default.
- W3143148719 type Work @default.
- W3143148719 sameAs 3143148719 @default.
- W3143148719 citedByCount "0" @default.
- W3143148719 crossrefType "book-chapter" @default.
- W3143148719 hasAuthorship W3143148719A5018075638 @default.
- W3143148719 hasAuthorship W3143148719A5042516627 @default.
- W3143148719 hasAuthorship W3143148719A5049012445 @default.
- W3143148719 hasAuthorship W3143148719A5087630623 @default.
- W3143148719 hasConcept C105795698 @default.
- W3143148719 hasConcept C119599485 @default.
- W3143148719 hasConcept C127413603 @default.
- W3143148719 hasConcept C153294291 @default.
- W3143148719 hasConcept C154945302 @default.
- W3143148719 hasConcept C186370098 @default.
- W3143148719 hasConcept C205649164 @default.
- W3143148719 hasConcept C33923547 @default.
- W3143148719 hasConcept C41008148 @default.
- W3143148719 hasConcept C44154836 @default.
- W3143148719 hasConcept C541104983 @default.
- W3143148719 hasConceptScore W3143148719C105795698 @default.
- W3143148719 hasConceptScore W3143148719C119599485 @default.
- W3143148719 hasConceptScore W3143148719C127413603 @default.
- W3143148719 hasConceptScore W3143148719C153294291 @default.
- W3143148719 hasConceptScore W3143148719C154945302 @default.
- W3143148719 hasConceptScore W3143148719C186370098 @default.
- W3143148719 hasConceptScore W3143148719C205649164 @default.
- W3143148719 hasConceptScore W3143148719C33923547 @default.
- W3143148719 hasConceptScore W3143148719C41008148 @default.
- W3143148719 hasConceptScore W3143148719C44154836 @default.
- W3143148719 hasConceptScore W3143148719C541104983 @default.
- W3143148719 hasLocation W31431487191 @default.
- W3143148719 hasOpenAccess W3143148719 @default.
- W3143148719 hasPrimaryLocation W31431487191 @default.
- W3143148719 hasRelatedWork W12594185 @default.
- W3143148719 hasRelatedWork W1335564 @default.
- W3143148719 hasRelatedWork W14170573 @default.
- W3143148719 hasRelatedWork W1945933 @default.
- W3143148719 hasRelatedWork W3882068 @default.
- W3143148719 hasRelatedWork W4071581 @default.
- W3143148719 hasRelatedWork W8541115 @default.
- W3143148719 hasRelatedWork W8882537 @default.
- W3143148719 hasRelatedWork W1655990 @default.
- W3143148719 hasRelatedWork W9521719 @default.
- W3143148719 isParatext "false" @default.
- W3143148719 isRetracted "false" @default.
- W3143148719 magId "3143148719" @default.
- W3143148719 workType "book-chapter" @default.