Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143177002> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3143177002 endingPage "576" @default.
- W3143177002 startingPage "561" @default.
- W3143177002 abstract "Deep convolutional neural network (DCNN) requires a lot of data for training, but there has always been data vacuum in agriculture, making it difficult to label all existing data accurately. Therefore, a lightweight tomato leaf disease identification network supported by Variational auto-Encoder (VAE) is proposed to improve the accuracy of crop leaf disease identification. In the lightweight network, multi-scale convolution can expand the network width, enrich the extracted features, and reduce model parameters such as deep separable convolution. VAE makes full use of a large amount of unlabeled data to achieve unsupervised learning, and then uses labeled data for supervised disease identification. However, in the actual model deployment and production environment, VAE doesn’t require additional calculation and storage consumption, because it is not used in the calculation of the application phase. Compared with the classification network that only uses labeled data, the generalization effect and identification accuracy of this proposed method are enhanced. Especially in the case of fewer labeled samples, the identification accuracy has increased from 56.13% to 78.03%, and in the case of many labeled samples, the identification accuracy also shows a rise. We have fully confirmed the effectiveness of the lightweight network and VAE enhancement strategy: the correct detection rate of disease category by this method is 94.17%, and only 0.42% of the diseased leaves are misidentified as healthy leaves; the correct detection rate of healthy leaves is 98.27%, and only 1.73% of healthy leaves are misidentified as diseased leaves." @default.
- W3143177002 created "2021-04-13" @default.
- W3143177002 creator A5005604241 @default.
- W3143177002 creator A5034853476 @default.
- W3143177002 creator A5069388274 @default.
- W3143177002 date "2021-01-01" @default.
- W3143177002 modified "2023-09-27" @default.
- W3143177002 title "Tomato Leaf Disease Identification and Detection Based on Deep Convolutional Neural Network" @default.
- W3143177002 cites W2117793557 @default.
- W3143177002 cites W2614850301 @default.
- W3143177002 cites W2806070179 @default.
- W3143177002 cites W2912338982 @default.
- W3143177002 cites W2914622272 @default.
- W3143177002 cites W2965417721 @default.
- W3143177002 cites W2980548669 @default.
- W3143177002 cites W2988262953 @default.
- W3143177002 cites W3001882252 @default.
- W3143177002 cites W3042480313 @default.
- W3143177002 cites W3103750171 @default.
- W3143177002 cites W4245009893 @default.
- W3143177002 cites W639708223 @default.
- W3143177002 doi "https://doi.org/10.32604/iasc.2021.016415" @default.
- W3143177002 hasPublicationYear "2021" @default.
- W3143177002 type Work @default.
- W3143177002 sameAs 3143177002 @default.
- W3143177002 citedByCount "9" @default.
- W3143177002 countsByYear W31431770022021 @default.
- W3143177002 countsByYear W31431770022022 @default.
- W3143177002 countsByYear W31431770022023 @default.
- W3143177002 crossrefType "journal-article" @default.
- W3143177002 hasAuthorship W3143177002A5005604241 @default.
- W3143177002 hasAuthorship W3143177002A5034853476 @default.
- W3143177002 hasAuthorship W3143177002A5069388274 @default.
- W3143177002 hasBestOaLocation W31431770021 @default.
- W3143177002 hasConcept C108583219 @default.
- W3143177002 hasConcept C116834253 @default.
- W3143177002 hasConcept C134306372 @default.
- W3143177002 hasConcept C150903083 @default.
- W3143177002 hasConcept C153180895 @default.
- W3143177002 hasConcept C154945302 @default.
- W3143177002 hasConcept C177148314 @default.
- W3143177002 hasConcept C3019235130 @default.
- W3143177002 hasConcept C33923547 @default.
- W3143177002 hasConcept C41008148 @default.
- W3143177002 hasConcept C45347329 @default.
- W3143177002 hasConcept C50644808 @default.
- W3143177002 hasConcept C59822182 @default.
- W3143177002 hasConcept C81363708 @default.
- W3143177002 hasConcept C86803240 @default.
- W3143177002 hasConceptScore W3143177002C108583219 @default.
- W3143177002 hasConceptScore W3143177002C116834253 @default.
- W3143177002 hasConceptScore W3143177002C134306372 @default.
- W3143177002 hasConceptScore W3143177002C150903083 @default.
- W3143177002 hasConceptScore W3143177002C153180895 @default.
- W3143177002 hasConceptScore W3143177002C154945302 @default.
- W3143177002 hasConceptScore W3143177002C177148314 @default.
- W3143177002 hasConceptScore W3143177002C3019235130 @default.
- W3143177002 hasConceptScore W3143177002C33923547 @default.
- W3143177002 hasConceptScore W3143177002C41008148 @default.
- W3143177002 hasConceptScore W3143177002C45347329 @default.
- W3143177002 hasConceptScore W3143177002C50644808 @default.
- W3143177002 hasConceptScore W3143177002C59822182 @default.
- W3143177002 hasConceptScore W3143177002C81363708 @default.
- W3143177002 hasConceptScore W3143177002C86803240 @default.
- W3143177002 hasIssue "2" @default.
- W3143177002 hasLocation W31431770021 @default.
- W3143177002 hasOpenAccess W3143177002 @default.
- W3143177002 hasPrimaryLocation W31431770021 @default.
- W3143177002 hasRelatedWork W2470368200 @default.
- W3143177002 hasRelatedWork W2593657123 @default.
- W3143177002 hasRelatedWork W2738221750 @default.
- W3143177002 hasRelatedWork W3129634582 @default.
- W3143177002 hasRelatedWork W3156786002 @default.
- W3143177002 hasRelatedWork W3165266428 @default.
- W3143177002 hasRelatedWork W3189091156 @default.
- W3143177002 hasRelatedWork W4312417841 @default.
- W3143177002 hasRelatedWork W4321369474 @default.
- W3143177002 hasRelatedWork W564581980 @default.
- W3143177002 hasVolume "28" @default.
- W3143177002 isParatext "false" @default.
- W3143177002 isRetracted "false" @default.
- W3143177002 magId "3143177002" @default.
- W3143177002 workType "article" @default.