Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143179966> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3143179966 endingPage "113917" @default.
- W3143179966 startingPage "113917" @default.
- W3143179966 abstract "Traditional experimental investigation on the mechanical properties of cement composites is deprecated due to the intensive time and labor involved. Existing predictive models can hardly map the complicated relationships among mechanical attributes and behavior. This study first adopts machine learning to predict the mechanical properties of carbon nanotube (CNT)-reinforced cement composites. For this purpose, predictive models are trained on the previously published experimental data and results demonstrate that machine learning models present better generalization ability and predictive performance than the traditional response surface methodology. A sensitivity analysis indicates that the factor having the maximum influence on compressive strength is the length of CNTs, whereas that having the maximum influence on flexural strength is the curing temperature. Thus, it can be concluded that compared with the traditional experimental investigation and regression methods, machine learning can efficiently and accurately predict the mechanical properties of CNT-reinforced cement composites." @default.
- W3143179966 created "2021-04-13" @default.
- W3143179966 creator A5010572901 @default.
- W3143179966 creator A5032516712 @default.
- W3143179966 creator A5041706911 @default.
- W3143179966 date "2021-07-01" @default.
- W3143179966 modified "2023-10-11" @default.
- W3143179966 title "Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites" @default.
- W3143179966 cites W1979777795 @default.
- W3143179966 cites W1982839015 @default.
- W3143179966 cites W1983632681 @default.
- W3143179966 cites W1985612647 @default.
- W3143179966 cites W1989941975 @default.
- W3143179966 cites W2008296463 @default.
- W3143179966 cites W2012004211 @default.
- W3143179966 cites W2018953849 @default.
- W3143179966 cites W2026634275 @default.
- W3143179966 cites W2027365667 @default.
- W3143179966 cites W2043526436 @default.
- W3143179966 cites W2045561044 @default.
- W3143179966 cites W2052869522 @default.
- W3143179966 cites W2053499143 @default.
- W3143179966 cites W2055397422 @default.
- W3143179966 cites W2060140662 @default.
- W3143179966 cites W2062910300 @default.
- W3143179966 cites W2074553368 @default.
- W3143179966 cites W2093433083 @default.
- W3143179966 cites W2114265872 @default.
- W3143179966 cites W2163487718 @default.
- W3143179966 cites W2526744638 @default.
- W3143179966 cites W2529974570 @default.
- W3143179966 cites W2537574531 @default.
- W3143179966 cites W2544623772 @default.
- W3143179966 cites W2623857563 @default.
- W3143179966 cites W2729750142 @default.
- W3143179966 cites W2740004867 @default.
- W3143179966 cites W2745912545 @default.
- W3143179966 cites W2757030749 @default.
- W3143179966 cites W2761122395 @default.
- W3143179966 cites W2766507481 @default.
- W3143179966 cites W2776295844 @default.
- W3143179966 cites W2795584064 @default.
- W3143179966 cites W2801746379 @default.
- W3143179966 cites W2902692980 @default.
- W3143179966 cites W2910696180 @default.
- W3143179966 cites W2949087603 @default.
- W3143179966 cites W2966957865 @default.
- W3143179966 doi "https://doi.org/10.1016/j.compstruct.2021.113917" @default.
- W3143179966 hasPublicationYear "2021" @default.
- W3143179966 type Work @default.
- W3143179966 sameAs 3143179966 @default.
- W3143179966 citedByCount "47" @default.
- W3143179966 countsByYear W31431799662021 @default.
- W3143179966 countsByYear W31431799662022 @default.
- W3143179966 countsByYear W31431799662023 @default.
- W3143179966 crossrefType "journal-article" @default.
- W3143179966 hasAuthorship W3143179966A5010572901 @default.
- W3143179966 hasAuthorship W3143179966A5032516712 @default.
- W3143179966 hasAuthorship W3143179966A5041706911 @default.
- W3143179966 hasConcept C132976073 @default.
- W3143179966 hasConcept C159985019 @default.
- W3143179966 hasConcept C178405089 @default.
- W3143179966 hasConcept C192562407 @default.
- W3143179966 hasConcept C30407753 @default.
- W3143179966 hasConcept C513720949 @default.
- W3143179966 hasConcept C523993062 @default.
- W3143179966 hasConceptScore W3143179966C132976073 @default.
- W3143179966 hasConceptScore W3143179966C159985019 @default.
- W3143179966 hasConceptScore W3143179966C178405089 @default.
- W3143179966 hasConceptScore W3143179966C192562407 @default.
- W3143179966 hasConceptScore W3143179966C30407753 @default.
- W3143179966 hasConceptScore W3143179966C513720949 @default.
- W3143179966 hasConceptScore W3143179966C523993062 @default.
- W3143179966 hasFunder F4320309893 @default.
- W3143179966 hasFunder F4320321001 @default.
- W3143179966 hasFunder F4320321592 @default.
- W3143179966 hasLocation W31431799661 @default.
- W3143179966 hasOpenAccess W3143179966 @default.
- W3143179966 hasPrimaryLocation W31431799661 @default.
- W3143179966 hasRelatedWork W1537428095 @default.
- W3143179966 hasRelatedWork W2054347469 @default.
- W3143179966 hasRelatedWork W2057058024 @default.
- W3143179966 hasRelatedWork W2357883791 @default.
- W3143179966 hasRelatedWork W2358880141 @default.
- W3143179966 hasRelatedWork W2558498902 @default.
- W3143179966 hasRelatedWork W2792324762 @default.
- W3143179966 hasRelatedWork W3032894869 @default.
- W3143179966 hasRelatedWork W4221019789 @default.
- W3143179966 hasRelatedWork W4306362096 @default.
- W3143179966 hasVolume "267" @default.
- W3143179966 isParatext "false" @default.
- W3143179966 isRetracted "false" @default.
- W3143179966 magId "3143179966" @default.
- W3143179966 workType "article" @default.