Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143203916> ?p ?o ?g. }
- W3143203916 endingPage "352" @default.
- W3143203916 startingPage "318" @default.
- W3143203916 abstract "This article concerns Ehresmann structures in the partition monoid PX. Since PX contains the symmetric and dual symmetric inverse monoids on the same base set X, it naturally contains the semilattices of idempotents of both submonoids. We show that one of these semilattices leads to an Ehresmann structure on PX while the other does not. We explore some consequences of this (structural/combinatorial and representation theoretic), and in particular characterise the largest left-, right- and two-sided restriction submonoids. The new results are contrasted with known results concerning relation monoids, and a number of interesting dualities arise, stemming from the traditional philosophies of inverse semigroups as models of partial symmetries (Vagner and Preston) or block symmetries (FitzGerald and Leech): “surjections between subsets” for relations become “injections between quotients” for partitions. We also consider some related diagram monoids, including rook partition monoids, and state several open problems." @default.
- W3143203916 created "2021-04-13" @default.
- W3143203916 creator A5066454537 @default.
- W3143203916 creator A5069552429 @default.
- W3143203916 date "2021-08-01" @default.
- W3143203916 modified "2023-09-25" @default.
- W3143203916 title "Ehresmann theory and partition monoids" @default.
- W3143203916 cites W1518573520 @default.
- W3143203916 cites W1753706763 @default.
- W3143203916 cites W1966602092 @default.
- W3143203916 cites W1973420492 @default.
- W3143203916 cites W1976663252 @default.
- W3143203916 cites W1983244685 @default.
- W3143203916 cites W1986129741 @default.
- W3143203916 cites W1986781620 @default.
- W3143203916 cites W2006006495 @default.
- W3143203916 cites W2013590248 @default.
- W3143203916 cites W2014389955 @default.
- W3143203916 cites W2019472146 @default.
- W3143203916 cites W2027178694 @default.
- W3143203916 cites W2029221142 @default.
- W3143203916 cites W2037269616 @default.
- W3143203916 cites W2041508032 @default.
- W3143203916 cites W2044138171 @default.
- W3143203916 cites W2050344071 @default.
- W3143203916 cites W2059659521 @default.
- W3143203916 cites W2071876886 @default.
- W3143203916 cites W2071908342 @default.
- W3143203916 cites W2076565938 @default.
- W3143203916 cites W2083599366 @default.
- W3143203916 cites W2083861618 @default.
- W3143203916 cites W2084398886 @default.
- W3143203916 cites W2086681482 @default.
- W3143203916 cites W2087122736 @default.
- W3143203916 cites W2087991161 @default.
- W3143203916 cites W2092438401 @default.
- W3143203916 cites W2097742401 @default.
- W3143203916 cites W2098373556 @default.
- W3143203916 cites W2101387847 @default.
- W3143203916 cites W2105030706 @default.
- W3143203916 cites W2117205980 @default.
- W3143203916 cites W2120207347 @default.
- W3143203916 cites W2120553841 @default.
- W3143203916 cites W2120930689 @default.
- W3143203916 cites W2121190750 @default.
- W3143203916 cites W2121711943 @default.
- W3143203916 cites W2125853847 @default.
- W3143203916 cites W2140357412 @default.
- W3143203916 cites W2155365991 @default.
- W3143203916 cites W2167982168 @default.
- W3143203916 cites W2169915608 @default.
- W3143203916 cites W2231551317 @default.
- W3143203916 cites W2315234012 @default.
- W3143203916 cites W2316726503 @default.
- W3143203916 cites W2322238679 @default.
- W3143203916 cites W2559978174 @default.
- W3143203916 cites W2745917119 @default.
- W3143203916 cites W2767869470 @default.
- W3143203916 cites W2899408061 @default.
- W3143203916 cites W2902657749 @default.
- W3143203916 cites W2913136524 @default.
- W3143203916 cites W2962758453 @default.
- W3143203916 cites W2962781288 @default.
- W3143203916 cites W2963170599 @default.
- W3143203916 cites W2963282310 @default.
- W3143203916 cites W2963470760 @default.
- W3143203916 cites W2963631886 @default.
- W3143203916 cites W2963664323 @default.
- W3143203916 cites W2963756251 @default.
- W3143203916 cites W2963774568 @default.
- W3143203916 cites W2963794380 @default.
- W3143203916 cites W2965962962 @default.
- W3143203916 cites W3092164185 @default.
- W3143203916 cites W3101438788 @default.
- W3143203916 cites W3126116132 @default.
- W3143203916 cites W3145287507 @default.
- W3143203916 cites W4205567970 @default.
- W3143203916 cites W4239445786 @default.
- W3143203916 cites W4240967662 @default.
- W3143203916 cites W4250388823 @default.
- W3143203916 doi "https://doi.org/10.1016/j.jalgebra.2021.02.038" @default.
- W3143203916 hasPublicationYear "2021" @default.
- W3143203916 type Work @default.
- W3143203916 sameAs 3143203916 @default.
- W3143203916 citedByCount "7" @default.
- W3143203916 countsByYear W31432039162020 @default.
- W3143203916 countsByYear W31432039162021 @default.
- W3143203916 countsByYear W31432039162022 @default.
- W3143203916 countsByYear W31432039162023 @default.
- W3143203916 crossrefType "journal-article" @default.
- W3143203916 hasAuthorship W3143203916A5066454537 @default.
- W3143203916 hasAuthorship W3143203916A5069552429 @default.
- W3143203916 hasBestOaLocation W31432039162 @default.
- W3143203916 hasConcept C114614502 @default.
- W3143203916 hasConcept C137212723 @default.
- W3143203916 hasConcept C202444582 @default.
- W3143203916 hasConcept C206901836 @default.
- W3143203916 hasConcept C24424167 @default.