Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143447745> ?p ?o ?g. }
- W3143447745 abstract "In India, tuberculosis is an enormous public health problem. This study provides the first description of molecular diversity of the Mycobacterium tuberculosis complex (MTBC) from Sikkim, India. A total of 399 Acid Fast Bacilli sputum positive samples were cultured on Lőwenstein-Jensen media and genetic characterisation was done by spoligotyping and 24-loci MIRU-VNTR typing. Spoligotyping revealed the occurrence of 58 different spoligotypes. Beijing spoligotype was the most dominant type constituting 62.41% of the total isolates and was associated with Multiple Drug Resistance. Minimum Spanning tree analysis of 249 Beijing strains based on 24-loci MIRU-VNTR analysis identified 12 clonal complexes (Single Locus Variants). The principal component analysis was used to visualise possible grouping of MTBC isolates from Sikkim belonging to major spoligotypes using 24-MIRU VNTR profiles. Artificial intelligence-based machine learning (ML) methods such as Random Forests (RF), Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used to predict dominant spoligotypes of MTBC using MIRU-VNTR data. K-fold cross-validation and validation using unseen testing data set revealed high accuracy of ANN, RF, and SVM for predicting Beijing, CAS1_Delhi, and T1 Spoligotypes (93-99%). However, prediction using the external new validation data set revealed that the RF model was more accurate than SVM and ANN." @default.
- W3143447745 created "2021-04-13" @default.
- W3143447745 creator A5021548349 @default.
- W3143447745 creator A5029069935 @default.
- W3143447745 creator A5036614156 @default.
- W3143447745 creator A5047165498 @default.
- W3143447745 creator A5071030624 @default.
- W3143447745 creator A5083380561 @default.
- W3143447745 creator A5088108498 @default.
- W3143447745 date "2021-04-01" @default.
- W3143447745 modified "2023-09-26" @default.
- W3143447745 title "Molecular diversity of Mycobacterium tuberculosis complex in Sikkim, India and prediction of dominant spoligotypes using artificial intelligence" @default.
- W3143447745 cites W1832154709 @default.
- W3143447745 cites W1838004362 @default.
- W3143447745 cites W1966912234 @default.
- W3143447745 cites W1967258923 @default.
- W3143447745 cites W1969454874 @default.
- W3143447745 cites W1970134306 @default.
- W3143447745 cites W1972680546 @default.
- W3143447745 cites W1979726037 @default.
- W3143447745 cites W1982103971 @default.
- W3143447745 cites W1985830215 @default.
- W3143447745 cites W1989542782 @default.
- W3143447745 cites W2001071339 @default.
- W3143447745 cites W2007171072 @default.
- W3143447745 cites W2012473911 @default.
- W3143447745 cites W2013923392 @default.
- W3143447745 cites W2013970054 @default.
- W3143447745 cites W2018883634 @default.
- W3143447745 cites W2019244737 @default.
- W3143447745 cites W2025201177 @default.
- W3143447745 cites W2028836478 @default.
- W3143447745 cites W2030047147 @default.
- W3143447745 cites W2031599370 @default.
- W3143447745 cites W2043193112 @default.
- W3143447745 cites W2052642114 @default.
- W3143447745 cites W2055200195 @default.
- W3143447745 cites W2059566101 @default.
- W3143447745 cites W2059566502 @default.
- W3143447745 cites W2061999307 @default.
- W3143447745 cites W2065423927 @default.
- W3143447745 cites W2067184085 @default.
- W3143447745 cites W2072113124 @default.
- W3143447745 cites W2074748320 @default.
- W3143447745 cites W2075251615 @default.
- W3143447745 cites W2075458078 @default.
- W3143447745 cites W2078942539 @default.
- W3143447745 cites W2080616997 @default.
- W3143447745 cites W2083984211 @default.
- W3143447745 cites W2087902600 @default.
- W3143447745 cites W2092101722 @default.
- W3143447745 cites W2096162460 @default.
- W3143447745 cites W2098618245 @default.
- W3143447745 cites W2103000007 @default.
- W3143447745 cites W2104278527 @default.
- W3143447745 cites W2105513728 @default.
- W3143447745 cites W2107073591 @default.
- W3143447745 cites W2107108409 @default.
- W3143447745 cites W2115727302 @default.
- W3143447745 cites W2117034387 @default.
- W3143447745 cites W2119119368 @default.
- W3143447745 cites W2123360738 @default.
- W3143447745 cites W2125140731 @default.
- W3143447745 cites W2126672627 @default.
- W3143447745 cites W2128149046 @default.
- W3143447745 cites W2134558351 @default.
- W3143447745 cites W2143155081 @default.
- W3143447745 cites W2146216814 @default.
- W3143447745 cites W2147141708 @default.
- W3143447745 cites W2152915987 @default.
- W3143447745 cites W2162912294 @default.
- W3143447745 cites W2163972658 @default.
- W3143447745 cites W2164198835 @default.
- W3143447745 cites W2165822919 @default.
- W3143447745 cites W2169602677 @default.
- W3143447745 cites W2170389408 @default.
- W3143447745 cites W2208986400 @default.
- W3143447745 cites W2311662293 @default.
- W3143447745 cites W2403031398 @default.
- W3143447745 cites W2664267452 @default.
- W3143447745 cites W2805410881 @default.
- W3143447745 cites W2913335918 @default.
- W3143447745 cites W3009207988 @default.
- W3143447745 cites W3014006479 @default.
- W3143447745 cites W3088661349 @default.
- W3143447745 cites W3088943773 @default.
- W3143447745 cites W331077154 @default.
- W3143447745 cites W850469031 @default.
- W3143447745 doi "https://doi.org/10.1038/s41598-021-86626-z" @default.
- W3143447745 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8016865" @default.
- W3143447745 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33795751" @default.
- W3143447745 hasPublicationYear "2021" @default.
- W3143447745 type Work @default.
- W3143447745 sameAs 3143447745 @default.
- W3143447745 citedByCount "11" @default.
- W3143447745 countsByYear W31434477452021 @default.
- W3143447745 countsByYear W31434477452022 @default.
- W3143447745 countsByYear W31434477452023 @default.
- W3143447745 crossrefType "journal-article" @default.
- W3143447745 hasAuthorship W3143447745A5021548349 @default.